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Abstract

End-to-end (E2E) spoken language under-
standing (SLU) is constrained by the cost of
collecting speech-semantics pairs, especially
when label domains change. Hence, we ex-
plore zero-shot E2E SLU, which learns E2E
SLU without speech-semantics pairs, instead
using only speech-text and text-semantics
pairs. Previous work achieved zero-shot
by pseudolabeling all speech-text transcripts
with a natural language understanding (NLU)
model learned on text-semantics corpora.
However, this method requires the domains
of speech-text and text-semantics to match,
which often mismatch due to separate collec-
tions. Furthermore, using the entire speech-
text corpus from any domains leads to im-
balance and noise issues. To address these,
we propose cross-modal selective self-training
(CMSST). CMSST tackles imbalance by clus-
tering in a joint space of the three modal-
ities (speech, text, and semantics) and han-
dles label noise with a selection network. We
also introduce two benchmarks for zero-shot
E2E SLU, covering matched and found speech
(mismatched) settings. Experiments show that
CMSST improves performance in both two set-
tings, with significantly reduced sample sizes
and training time.

1 Introduction

End-to-end (E2E) spoken language understand-
ing (SLU) models train on speech-semantics pairs,
inferring semantics directly from acoustic fea-
tures (Serdyuk et al., 2018) and leveraging non-
lexical information like stress and intonation. In
contrast, pipelined SLU models (Tur and De Mori,
2011) operate on speech-transcribed text, omit-
ting the acoustic information. In all, E2E SLU
has gained significant research attention. How-
ever, training E2E SLU models faces a significant
challenge in collecting numerous speech-semantics

∗Work done during an internship at AWS AI Labs.

pairs (Hsu et al., 2021). This challenge is two-fold:
the scarcity of public speech-semantics pairs due to
annotation costs and the need to relabel speeches
when the labeling schema evolves, e.g., functional-
ity expansion (Goyal et al., 2018). While speech-
semantics pairs are scarce and expensive to anno-
tate, there is a growing availability of speech-text
pairs used in automatic speech recognition (ASR)
and text-semantics pairs used in natural language
understanding (NLU) (Galvez et al., 2021; FitzGer-
ald et al., 2022). Thus, we define zero-shot E2E
SLU, which learns an E2E SLU model by speech-
text and text-semantics pairs without ground-truth
speech-semantics pairs (hence zero-shot).

Only two works have explored zero-shot E2E
SLU. Pasad et al. (2022) trained an NLU model by
text-semantics pairs and used it to predict pseudola-
bels for the text of all speech-text pairs, similar to
Figure 1(a). They then trained an E2E SLU model
using the speech audio from the speech-text pairs,
paired with the predicted pseudolabels. In another
way, Mdhaffar et al. (2022) mapped the text of all
text-semantics pairs to speech embeddings, creat-
ing "pseudospeech"-semantics pairs.

However, both works assume that text-semantics
and speech-text pairs have matched domains.
In practice, however, the speech-text and text-
semantics pairs are often separately collected, so
the domain of speech in speech-text pairs and text
in text-semantics pairs may be mismatched. In
such cases, directly using all speech-text and text-
semantics pairs for zero-shot E2E SLU leads to
two types of issues, which we classify as:
Noise. Sample noise comes from speech-text pairs
whose transcripts (texts) are out-of-domain (OOD)
for the NLU task. Passing all transcripts through
NLU inference leads to inaccurate pseudolabels on
the OOD data, impacting SLU learning. This exac-
erbates label noise, which refers to incorrect NLU
model predictions that are then (wrongly) treated as
pseudolabels; this issue is inherent to self-training
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Figure 1: (a). Diagram of using all speech-text pairs, detailed in Sec. 1. The legend in (b) is also applicable to
(a). (b). Diagram of the CMSST framework (described in Sec. 4). Speech and text pairs in DA�T are selected
by first using a text-similarity-based selection method and then a Multi-view Clustering-based Sample Selection
(MCSS) algorithm. The SLU model Θ̃A�L is trained on the resulting speech-text pairs D̃A�T , with pseudolabels
from an NLU model ΘT�L,t. This NLU model is trained from target domain text-to-semantics pairs DT�L,t. To
deal with label noise from the NLU model, CMSST uses a Cross-Modal SelectiveNet (CMSN) to train our SLU
model Θ̃A�L.

and also impacts performance (Du et al., 2020).
Imbalance. Since the text-semantics and speech-
text pairs are separately collected, even after remov-
ing OOD speech-text pairs, the remaining text in
speech-text pairs may be heavily imbalanced within
the NLU domain, e.g., one semantics dominates all
others. Besides, imbalanced speech, e.g., having
only female voices, can bias E2E SLU learning.
Though a model may succeed despite the imbal-
ance, this can waste training resources that could
have been used on representative speech-text pairs.

For these issues, Pasad et al. (2022) and Md-
haffar et al. (2022) mitigate sample noise and im-
balance by selecting speech-text pairs that directly
match the target text-semantics domain; however,
in practice, it is hard to gain such well-matched
and well-balanced speech-text corpus themselves.
Furthermore, neither work is selective with pseudo-
data, which in Pasad et al. (2022) led to degradation
when more external speech-text was added, due to
label noise. Instead, with selection as a unifying
perspective, we make the following contributions:
(i). Zero-shot E2E SLU benchmarks for both
matched and found speech. For the matched
domain setting, we define VoxPopuli2SLUE,
combining text-semantics pairs of SLUE’s NER-
annotated subset (Shon et al., 2022) of VoxPop-
uli (Wang et al., 2021) with speech-text pairs from
VoxPopuli, similar to Pasad et al. (2022). More
notably, for the found speech setting, we define
MiniPS2SLURP, combining the home-assistant
text-semantics pairs of SLURP (Bastianelli et al.,
2020) with speech-text pairs from the general-
domain People’s Speech corpus (Galvez et al.,
2021). The data split and code for our zero-shot

E2E SLU benchmarks are publically released.1

(ii). Selection via cross-modal clustering and se-
lective networks to tackle imbalance and noise
in self-training. To tackle sample noise, we first
exclude OOD speech-text pairs using text similar-
ity. Then, for the imbalance, we propose multi-
view clustering-based sample selection (MCSS) to
resample speech-text pairs to give proportionate
diversity over three views (speech, text and latent
semantics). For label noise, we propose a cross-
modal SelectiveNet (CMSN), which selectively and
learnably trusts pseudolabels based on the ease of
learning common representations between the NLU
and SLU encoders. All together, we refer to our
proposed framework as cross-modal selective self-
training (CMSST), summarized in Figure 1(b).
(iii). Comprehensive experiments on zero-shot
E2E SLU. We compare the baselines with our
CMSST on the new benchmarks. CMSST achieves
better results with significantly less data. Abla-
tions show that clustering and selective learning
both contribute; Entity F1 improves 1.2 points on
VoxPopuli2SLUE with MCSS and 1.5 points on
MiniPS2SLURP with CMSN.

2 Related Work

Speech to semantics. Although not fully zero-
shot, works in semi-supervised E2E SLU have also
considered the mismatch problem. Rao et al. (2020)
train NLU and ASR systems independently, saving
their task-specific SLU data for a final joint training
stage. Others tackle the data sparsity or mismatch
issues using text-to-speech (TTS) to synthesize spo-

1https://github.com/amazon-science/
zero-shot-E2E-slu

https://github.com/amazon-science/zero-shot-E2E-slu
https://github.com/amazon-science/zero-shot-E2E-slu


MiniPS2 VoxPopuli2
Data Annotation SLURP SLUE

DA�L,t Speech-to-semantics pairs 22,782 2,250in target domain t

DT�L,t Text-to-semantics pairs 22,783 2,250in target domain t

DA�T,t Speech-to-text pairs 22,782 2,250in target domain t

DA�T,o Speech-to-text pairs 32,255 182,466in other domains o

DA�T Union of DA�T,t

55,037 184,716
and DA�T,o

Test Test speech-to-semantics 13,078 877pairs in target domain t

Table 1: Data annotations and sample sizes in our
datasets. DA�L,t is used for training a target SLU
model ΘA�L,t. DT�L,t and DA�T are used for train-
ing our E2E SLU model Θ̃A�L.

ken counterparts to NLU examples (Lugosch et al.,
2020). Pretraining on off-the-shelf (found) speech-
only data (Lugosch et al., 2019), text-only data
(Huang et al., 2020), or both (Chung et al., 2020;
Thomas et al., 2022) have improved SLU systems
beyond their core speech-semantics training data,
usually via an alignment objective or joint network.
Finally, Rongali et al. (2021) considered a different
notion of “zero-shot” E2E SLU, which we view
more aptly as text-only SLU adaptation; their set-
ting involves an initial E2E SLU model, trained
on speech-semantics pairs, having its label set ex-
panded with text-only data.
Self-training. This method (Scudder, 1965;
Yarowsky, 1995) further trains a model on unla-
beled inputs that are labeled by the same model,
as a form of semi-supervised learning. It has expe-
rienced a recent revival in both ASR (Kahn et al.,
2020) and NLU (Du et al., 2020), giving improve-
ments atop strong supervised and self-supervised
models, for which effective sample filters and la-
bel confidence models were key. Recently, Pasad
et al. (2022) performed self-training in the zero-
shot E2E NER case; however, since they work in
the matched case they do not address these issues
of imbalance and noise.
Multi-view clustering. Multiple views of the data
can improve clustering by integrating extensive in-
formation (Kumar and Daumé, 2011; Wang et al.,
2022; Qin et al., 2021; Xu et al., 2022). We propose
using the modalities in speech-text pairs (speech,
text, and latent semantics) as bases to build a joint
space, where we apply clusters to enable balanced
selection. We apply simple heuristics atop the clus-
ters, and leave stronger algorithms, e.g., Trosten
et al. (2021) to future work.
Selective learning. Selective learning aims at de-

signing models that are robust in the presence of
mislabeled datasets (Ziyin et al., 2020). It is of-
ten achieved by a selective function (Geifman and
El-Yaniv, 2019). Selective learning has been re-
cently applied in a variety of applications (Gan-
grade et al., 2021; Kühne and Gühmann, 2022;
Varshney et al., 2022), but less so in NLP applica-
tions (Xin et al., 2021). To the best of our knowl-
edge, we are the first to propose a selective learning
method (Sec. 4.4) in the cross-modal setting.

3 Benchmarks for Zero-Shot E2E SLU

We define a target E2E SLU model as ΘA�L,t, that
is trained on data DA�L,t with pairs of speech au-
dio A and semantic labels L. These samples are in
a target domain t. We also write superscript T � L
to denote text T to semantic labels, and A � T to
denote speech audio to text.

Hence, in zero-shot, instead of having a speech-
to-semantics dataset DA�L,t, we have a text-to-
semantics pair set DT�L,t in the target domain,
and an external speech-to-text pair set DA�T . Un-
like Pasad et al. (2022) or Mdhaffar et al. (2022),
the external speech-to-text data DA�T may be in-
dependently collected and have sample pairs from
other domains. We divide DA�T into two disjoint
subsets, with samples either in the target domain
t or being other domains o:

DA�T = DA�T,t ∪DA�T,o. (1)

Given DT�L,t and DA�T , we aim to learn an
E2E SLU model Θ̃A�L that performs close to
ΘA�L,t. This is zero-shot, as training our Θ̃A�L

uses no speech-semantics pairs DA�L,t. We cre-
ated the below two datasets to study this problem:

Matched Speech: VoxPopuli2SLUE. We use
SLUE-VoxPopuli (Shon et al., 2022) as the tar-
get domain text-to-semantics data DT�L,t. The
external speech-to-text data DA�T is from Vox-
Populi (Wang et al., 2021). Because the two are
matched (SLUE-VoxPopuli and VoxPopuli are both
from European Parliamentary proceedings). We
denote this dataset as VoxPopuli2SLUE. In our no-
tation, matched means

DA�T = DA�T,t, DA�T,o = ∅. (2)

Found Speech: MiniPS2SLURP. We use
SLURP (Bastianelli et al., 2020) as the target
domain text-to-semantics data DT�L,t. Mini-
PS (Galvez et al., 2021) provides the other-domain



speech-to-text pairs DA�T,o. SLURP is in the
voice commands domain for controlling family
robots. It consists of 18 scenarios, with semantics
of “scenario", “action", “intent" and “entity". But
Mini-PS is a subset of People’s Speech corpus, with
32,255 speech-to-text pairs in diverse domains. We
then mix DA�T,o from Mini-PS and DA�T,t from
SLURP. The resulting dataset, MiniPS2SLURP,
gives the found (mismatched) setting.

For fair comparison, in the above two datasets,
we provide DA�L,t that has the same size and
speech as DA�T,t. The DA�L,t is only used to
learn ΘA�L,t and not applied to learn our Θ̃A�L.

We use the full SLURP test set as the test set in
MiniPS2SLURP, and half of the dev set in SLUE-
VoxPopuli as the test set in VoxPopuli2SLUE. The
dataset statistics, data annotations, and data usages
are in Table 1 with sample data in Table 5.

4 Cross-Modal Selective Self-Training

4.1 Introduction of A Basic SLU Model

Given a sequence of acoustic features A, the SLU
models ΘA�L,t and Θ̃A�L extract sentence-level
semantics (i.e., intents) and token-level semantics
(i.e., entity tags). To support these multiple types
of semantic tags, we use a sequence-to-sequence
architecture (Bastianelli et al., 2020; Ravanelli
et al., 2021), in which the output is a sequence Y
that consists of semantic types with their tags. The
SLU model uses a speech encoder to encode A into
a sequence of speech representations, and uses an
attentional sequence decoder to generate the output
sequence Y. The ΘA�L,t is trained by loss LA�L

that maximizes the likelihood of generating the
correct semantic sequence given the observation.

4.2 Overview of Our Model: CMSST

The speech-to-text data DA�T could provide more
external resource for SLU training. However, the
domain mismatch across DT�L,t and DA�T,o is
often inevitable and can lead to SLU performance
loss. In addition, the large size of DA�T may lead
to inefficient model training. Thus, we propose
a Cross-Modal Selective Self-Training (CMSST)
framework to alleviate this domain mismatch im-
pact in using DA�T to learn the SLU model Θ̃A�L.
We later show in Table 2 that CMSST achieves
higher performance and efficiency with fewer train-
ing samples in comparison to baselines.

Figure 1(b) illustrates CMSST. First, it computes
text similarity to exclude samples in DA�T with

large divergence to DT�L,t. Second, it takes the
distribution of the dataset into consideration, and
further filters DA�T using clustering methods to
reduce the imbalance within DA�T itself. These
two steps are described in Sec. 4.3. Lastly, it uses
a novel cross-modal selective training method, de-
scribed in Sec. 4.4, to reduce the impact of noisy
labels predicted by an NLU model ΘT�L,t. The
NLU model ΘT�L,t is pretrained on DT�L,t.

4.3 Reducing Sample Noise and Imbalance

Text similarity based selection. The sample se-
lection is firstly performed in a text embedding
space. K-means (Xu and Wunsch, 2005) is further
employed to cluster in the text embedding space
for texts from DT�L,t. For each text in DA�T , a
text similarity score is defined as the distance to
the closest clustering centroid of DT�L,t. Then a
threshold based on the text similarity scores is set
to exclude DA�T pairs with text disparity.
Multi-view Clustering-based Sample Selection
(MCSS). Though the above selection process re-
moves speech-text pairs in the other domains, the
remaining pairs can still be imbalanced. The im-
balanced data distribution introduces bias into the
training and decreases training efficiency. There-
fore, it is important to balance the remaining
speech-text pairs. Since each speech-text pair con-
tains audio, text, and latent semantic information,
we propose MCSS to balance these three compo-
nents. Figure 2 illustrates MCSS’s workflow. We
use superscripts T , A, and L to each denote the
text, speech, and semantic modalities, respectively.

First, for the text and speech modalities, we use
K-Means to cluster samples inDA�T . The text em-
bedding is SentenceBERT (Reimers and Gurevych,
2019) or the average of GloVe word2vec (Penning-
ton et al., 2014). The speech embedding is the av-
erage of a low-layer feature map in HuBERT (Hsu
et al., 2021). This step respectively outputs KT

and KA numbers of clustering centroids of text
modality and speech modality in DA�T .

To represent the semantic space, each entity type
inDT�L,t is an averaged text embedding on all text
spans inside that entity type. Therefore, the number
of entity centroidsKL is the number of entity types.
We denote these centroids as {µvk} for k ∈ Kv and
v ∈ {T,A,L} across three modalities.

Given a sample Xi in DA�T , its distance to
k-th clustering centroids µvk in modality v is de-
noted as dv(Xi, µ

v
k). Then, we compute the sam-
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Figure 2: Diagram of MCSS (described in Sec. 4.3).
We use superscripts T , A, and L to each denote text,
speech, and semantic modality. A blue box represents
the data from the DT→L,t, and a blue and pink box
represents data from DA→T .

ple modality-specific view ev(Xi) ∈ RKv
as the

sample distances to all centroids in modality v,

ev(Xi) = [· · · , dv(Xi, µ
v
k), · · · ] (3)

and k ∈ {1, 2, ...,Kv}.
Among three views, eT (Xi) and eL(Xi) con-

tain information related to T � L domain, while
eA(Xi) is generated from speech representation
that highly correlates acoustic features in DA�T .

We use Cosine distance for the speech and
text views and Mahalanobis distance for the se-
mantic view. As they are in different scales,
we apply zero-score normalization in each view.
In addition, to address the different importance
across different views, we use adjustable scalar
weight for each view. The multi-view represen-
tation is then created by weighted concatenations
as e(Xi) = [wTeT (Xi), w

AeA(Xi), w
LeL(Xi)]

and e(Xi) ∈ RK with K = KT +KA +KL.
We again apply the K-Means algorithm on these

multi-view representations {e(Xi)} by setting R
clusters. The corresponding clusters represent “sup-
ports” of a joint text, speech, and semantics space.

To obtain samples that are balanced in this joint
space, we select the equal number of samples for
each cluster, and these samples are nearest to the
cluster centroid they belong to. Suppose we tar-
get for N samples out of the algorithm, then each
cluster selects (bNR c) of the nearest samples. More
details are in Sec. A.1.

4.4 Reducing Label Noise
Given the selected speech-to-text pair set D̃A�T

from MCSS, the pretrained NLU model ΘT�L,t

predicts pseudolabels. An SLU model is then
trained on the speech and its pseudolabels. How-
ever, these pseudolabels are noisy, because of pre-
diction errors in the imperfect NLU model ΘT�L,t.
Hence, we propose Cross-Modal SelectiveNet

NLU Encoder NLU Head

SLU Encoder SLU Head

Pseudo
Labels

A common space in CMSN

Small 

Speech
Text Large 

Figure 3: Diagram of workflow for CMSN (described
in Sec. 4.4), where green or purple arrows are a pair
of text and speech. ρ is a selective score described in
Eq. (6).

(CMSN) to support selective learning and reduce
the label noise.

Figure 3 illustrates our CMSN. For a speech-
to-text pair Xi from D̃A�T , a text encoder in
ΘT�L,t and a speech encoder in Θ̃A�L extract their
modality-specific embedding vector fTi and fAi . Be-
cause these embeddings are from the same speech-
to-text pair in D̃A�T , they share a common seman-
tic space. Therefore, we learn modality-specific
projections to map the i-th sample embeddings to
vectors with the same shapes as below,

pv
i = Pvfvi , q

v
i = Qvfvi (4)

where v ∈ {T,A} and q is from the second com-
mon space introduced later. We can measure cross-
modal loss Lcm1i by the divergence between their
common semantic space representations,

Lcm1i = ||pT
i − pA

i || (5)

To facilitate selective learning, we compute a
scalar selective score ρ ∈ (0, 1) through a selection
function g(·) as below,

ρi = g(pT
i ,p

A
i ) (6)

g is a multilayer perceptron with a sigmoid function
on top of the last layer. With the selective score,
we define the following selective learning loss Lsel
to abstain samples with low selection scores,

Lsel = α · [max (τ − E[ρi], 0)]2 (7)

+ β · E[ρiLcm1i + ρiLA�L]

E[ρi]

where α and β are scalar weights. The first term
in Eq. (7) has a hyper-parameter τ ∈ [0, 1], which
is defined as the target coverage in Geifman and
El-Yaniv (2019). The first term encourages the
selective network to output selective scores that are
approaching τ , especially if the selective scores are
small at the beginning of model training.



For the second term in Eq. (7), when this loss
Lcm1i is large because of a biased text embedding,
the second term encourages a small ρi for Eq. (6)
to learn. Due to the biased text embedding, its
respective pseudolabel is also biased. Thus, even
if a biased pseudolabel leads to large LA�L, its
impact is scaled down by ρi. The final loss is below,

L = LA�L + Lsel + γLcm2 (8)

where γ is the weight of auxiliary cross-modal loss
Lcm2 . The Lcm2 encourages the common space
learning by the expectation (mean) of all sample
cross-modal differences weighted by respective ρ,

Lcm2 = E[ρi||qT
i − qA

i ||] (9)

The use of the Lcm2 via another projection Qv

is essential to optimize selective network (Geifman
and El-Yaniv, 2019). With Lcm2, the selective net-
work can additionally learn the alignment of cross-
modal features. Therefore, Lcm2 avoids overfitting
the selective network to the wrong subset, before
accurate low-level speech features are learned.

5 Experiments

We now compare models trained with the proposed
framework with alternative models on the two zero-
shot SLU datasets introduced in Sec. 3.

5.1 Performance Metrics

Following (Bastianelli et al., 2020), we report 1)
sentence-level classification performance using av-
erage accuracy (Avg. Acc.) on classifying Scenario
(Scenario Acc.), action (Action Acc.) and intent
(Intent Acc.), and 2) NER performance from the
list of entity type-value pairs. The Entity-F1 is
a sentence-level NER metric, in which the cor-
rectness of entity type-value pairs and their ap-
pearance orders are measured. Word-F1 drops
the penalty on their appearance orders. Char-F1
further relaxes exact match at word level and al-
lows character-level match of entity values. To
measure the training efficiency, we report numbers
of used speech-text pairs (sum of ‖DA�T,t‖ and
‖DA�T,o‖) and training time. Experiments were
run on a single GPU 3090 with 24G memory.

5.2 Baselines & Experiment Setups

We compare our method with two types of meth-
ods: 1) a strong baseline that uses all of the ASR
data (Pasad et al., 2022), denoted as Θ̃A�L

Full and

2) a model that random samples training data
to have data size comparable to our method, de-
noted as Θ̃A�L

RSamp. We also report the perfor-
mance of ΘA�L,t that is trained with target domain
speech-to-semantics data DA�L,t. We compare
text-similarity selection by GloVe and Sentence-
BERT(Abbr: SentBERT) . The ablation studies are
GloVe-based.

5.3 Main Results

The main results of the proposed model on the
two datasets are illustrated in Table 2. Firstly, our
proposed method using SentBERT embedding can
surpass the strong baseline Θ̃A�L

Full that uses all train-
ing samples in both GloVe-based and SentBERT-
based text-similarity. For example, on the NER
task, our SentBERT-based model has entity-F1 on
the matched speech VoxPopuli2SLUE is 38.0%,
surpassing the full system that is 37.0%. Be-
sides, our method shows a significant reduction
of training time from 225 hours to 6 hours and
number of speech-text pairs from 18k to 5k, as
our method uses 3% of the full dataset size. On
the found speech MiniPS2SLURP, our SentBERT-
based model achieves higher performance in both
accuracy and F1 scores and higher training effi-
ciency. For example, it improves 1.2 points in
Entity F1 than Θ̃A�L

Full that uses 1.5 times of training
time and data size of ours.

Our performance gain is apparent when com-
pared toΘ̃A�L

RSamp, using a similar size of randomly
sampled training data. In such a case, entity F1
scores on two datasets drop by around 1 and 2 per-
cents compared to our GloVe-based and SentBERT-
based methods, respectively.

The proposed method surpasses the performance
of the target model ΘA�L,t in the matched speech
VoxPopuli2SLUE set. For instance, our SentBERT-
based model has word-level entity F1 improved to
49.3% from 45.2% of the target model. On the
found speech MiniPS2SLURP, the difference to
the target model is reduced to 0.6% by our method,
compared to 1.1% by Θ̃A�L

Full and 2.5% by Θ̃A�L
RSamp

in terms of Avg. Acc.
The results on SentBERT-based text-similarity

marginally perform better than the GloVe-based.
Except the 1.2 percents difference on NER F1 on
VoxPopuli2SLUE, all the other metrics on both
two datasets show less than 1 percent difference.
The marginal difference between two methods is
similar to other self-training work (Du et al., 2020).



Models ‖DA�L,t‖ ‖DA�T,t‖ ‖DA�T,o‖
Avg. Acc. NER F1 (in %) Time

(in %) Entity Word Char (in hrs)
MiniPS2SLURP
Target model ΘA�L,t 22.8k 0 0 76.0 40.9 51.7 55.8 16
Θ̃A�L

Full (Pasad et al., 2022) 0 22.8k 32.3k 74.9 34.9 48.8 52.0 43
Θ̃A�L

RSamp 0 14.3k 20.6k 73.5 33.9 47.5 50.9 27
Our model Θ̃A�L (GloVe) 0 21.6k 13.4k 75.2 34.9 48.8 52.2 28
Our model Θ̃A�L (SentBERT) 0 22.1k 12.9k 75.4 35.7 49.3 52.9 27
VoxPopuli2SLUE
Target model ΘA�L,t 2,250 0 0 N/A 36.0 45.2 47.7 2
Θ̃A�L

Full (Pasad et al., 2022) 0 2,250 182.5k N/A 37.0 50.3 53.9 225
Θ̃A�L

RSamp 0 68 5.6k N/A 35.7 47.8 50.5 6
Our model Θ̃A�L (GloVe) 0 59 5.5k N/A 36.8 49.0 52.3 6
Our model Θ̃A�L (SentBERT) 0 61 5.5k N/A 38.0 49.3 52.4 6

Table 2: Results of the proposed CMSST and baselines on the datasets. Our model uses much less number of
speech-text pairs (the sum of ‖DA�T,t‖ and ‖DA�T,o‖) and training time compared with using all speech-text
pairs (Pasad et al., 2022), but achieves better or similar accuracy and F1 scores.

Due to the slight difference, our ablation studies
use GloVe-based text similarity selection for faster
speed.

6 Analysis

6.1 Ablation Studies

Multi-view Clustering-based Sample Selec-
tion(MCSS). We use different thresholds on the
text similarity scores and control the final selected
ASR data size with and without MCSS to be ap-
proximately the same for a fair comparison. Re-
sults are shown in Figure 4. On the found speech
MiniPS2SLURP, we observe that removing MCSS
(w/o MCSS) hurts performance. For example, us-
ing MCSS, entity F1 score is improved from 18.8%
to 28.0%, a 49% relative improvement. Another
observation is that MCSS apparently has more in-
domain samples than without using the MCSS algo-
rithm. For instance, the number of out-of-domain
samples is 10350 and is almost twice the samples
selected via MCSS in Θ̃A�L.
Cross Modal SelectiveNet (CMSN). Results in
Figure 4 show that further removing selective train-
ing (w/o MCSS, w/o CMSN) results in perfor-
mance loss. On the MiniPS2SLURP, the entity
F1 score is improved from 17.3% to 18.8% if using
CMSN, a relative 8.7% improvement.

Performance improvements are also observed
for the matched speech VoxPopuli2SLUE dataset
in Figure 4. These results show that both reduc-
ing imbalance by sample selection (MCSS) and
reducing label noise by selective learning (CMSN)
contribute to the improved performance of the pro-
posed framework.

6.2 Impacts from NLU Backbone

Backbone MCSS+CMSN NER F1 (in %)
Entity Word Char

LSTM 35.1 45.5 48.6
X 36.6 46.4 49.1

BERT 35.0 47.3 50.4
X 36.8 49.0 52.3

Table 3: Impact comparison of using LSTM and BERT
NLU backbones, on VoxPopuli2SLUE. Both back-
bones have ‖DA�T,t‖ = 68 and ‖DA�T,o‖ = 5489
after text similarity based selection and MCSS.

In this section, we conduct experiments on Vox-
Populi2SLUE to study the impact of different NLU
backbones in ΘT�L,t. The comparison reveals the
effectiveness of the proposed framework in deal-
ing with different qualities of pseudolabels. We
select LSTM and BERT due to their wide applica-
tions. The BERT-based backbone was fine-tuned
from pretrained “bert-base-uncased”. We fix its
parameters but train prediction heads. The LSTM
backbone was trained from scratch. Both back-
bones are trained from 2250 samples in DT�L,t.
We measure their performance on the test set using
ground truths from their text inputs. The BERT-
based NLU backbone has higher NER performance
than the LSTM-based NLU backbone, with 39.3%
vs. 36.7% entity F1 Score.

From Table 3, we observe that (1) labels from
BERT-based backbone result in comparable or
higher performance, (2) using the framework (w/
MCSS+CMSN checked) consistently improves per-
formances of the learned SLU models.
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Figure 4: Ablation study on the effectiveness of multi-
view sample selection and selective training on Θ̃A�L.
The pseudolabels are from BERT-based ΘT�L,t. Their
‖DA�T,t‖ and ‖DA�T,o‖ size are each listed in square
brackets for each configuration.

6.3 Sample Diversity

This section provides further analysis of MCSS.
The observation in Figure 4 shows improved per-
formance and increased proportions of in-domain
data. Our hypothesis is that samples are more di-
verse due to the sample selection method described
in Sec. 4.3. To quantify this, we measure the en-
tropy of the selected samples, specifically for each
view v ∈ {T, L,A}. Entropy in each view v is
computed as −

∑Kv

k=1
nv
k

N log
nv
k

N , where Kv is the
number of clusters for view v, nvk is the number of
samples in cluster k for view v, and N is the total

Sampling ‖DA�T,t‖ ‖DA�T,o‖ Diversity (Entropy)
Method T L A
Equal 59 5,491 3.94 1.34 4.36
Random 61 5,495 3.84 1.24 4.34
Extreme 47 5,509 3.78 1.20 2.55
w/o MCSS 68 5,489 2.75 1.03 4.27

Table 4: Sample diversity from views of the three
modalities (text (T), semantic labels (L), and audio
(A)). They are computed as entropy on samples from
different selection methods. Results are on VoxPop-
uli2SLUE.
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Figure 5: Entity F1 Scores and Avg. Acc. on the found
speech MiniPS2SLURP dataset, where all groups have
the same ‖DA�T,t‖ = 21597 and ‖DA�T,o‖ = 13400.

number of samples. Their results are in Table 4.
For comparison, we also measure the entropy from
random sampling (Random) and entropy from se-
lecting samples with as few clusters as possible (Ex-
treme). We observe that the entropy from the equal
sampling method is larger than random sampling
in all three views. The extreme sampling method
has the lowest entropy, compared to the other two
sampling methods. As a larger entropy indicates
more diversity, we conclude that our equal sam-
pling results in the largest diversity among these
methods. We also list the entropy on a similar size
of filtered samples without MCSS; their entropies
in three views are much lower compared to our
equal sampling method.

6.4 Parameter Analysis

Figure 5 shows Entity F1 scores and average accu-
racy on the found speech MiniPS2SLURP dataset.
The pseudolabels are from the BERT-based ΘT�L,t.
We observe a performance dependency on the cov-
erage rate τ with an optimal value of τ = 0.55.
Other parameter analysis reusults in both MCSS
and CMSN are in Sec. A.6.
Case study of our model is in Table 6.

7 Conclusion

We have presented a method for zero-shot E2E
spoken language understanding. We designed the
method with the assumption that 1) speech-to-text
and text-to-semantics data are collected separately
and 2) speech-to-semantics data for an SLU model
is not available. This is a challenging situation that



often happens in developing E2E SLU models for
new applications and in new domains. To support
this study, we have created two datasets: one for
matched speech to the target domain and the other
for found speech in diverse source domains. We
have proposed methods to address two particular
issues: 1) noise, which includes input noise from
out-of-domain ASR data whose text transcripts are
outliers in the NLU data domain and labeling noise
from imperfect NLU models, and 2) imbalance,
which often occurs in the multiple modalities of
speech, text, and semantics for SLU. We have pro-
posed a multi-view clustering-based sample selec-
tion method to select speech-text pairs that are rep-
resentative of acoustic variability, text variability,
and semantic coverage, aiming at reducing the im-
balance. We further proposed a selective training
model, Cross-Modal SelectiveNet, that attenuates
the impact of low-confidence pseudolabels, aim-
ing to reduce impacts from label noise. Extensive
experiments on both datasets show that our meth-
ods achieve consistent improvement, approaching
targeted direct E2E SLU models at a much lower
computational cost than alternatives.
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A Appendix

A.1 Model
Semantic representations. Specifically, the se-
mantics in DT�L,t has KL types (i.e. “LOC”,
“DATE”). We use the average GloVe word2vec fea-
tures of all slot texts from a semantic type to build
their type centroids. As a result, we have KL clus-
tering centroids for semantics.
Normalization methods. For the normalization,
we use the z-score normalization for ev(Xi), where
v ∈ {T,A,L}. After the normalization, each
single-view representation ev(Xi) obeys a standard
Gaussian distribution and becomes comparable due
to the same scale.
Special cases in selecting bNR c samples from
each cluster. During the process of selecting bNR c
samples from R clusters, we encountered two spe-
cial cases that need additional designs. We list
them below.
Case 1: N is no smaller than the size of text-
similarity-based selected speech-to-text pairs. We
select all text-similarity-based selected speech-to-
text pairs and ignore the upper limitationN by skip-
ping MCSS. As a result, all text-similarity-based
selected speech-to-text pairs are directly input to
CMSN.
Case 2: N is smaller than the size of text-similarity-
based selected speech-to-text pairs, and there exists
a cluster with a size smaller than bNR c. We address
this case by a greedy-based sample selection algo-
rithm. It greedily selects all samples in a cluster if
the cluster size is smaller than a minimum require-
ment, which is initialized as rmin = bNR c and rmin

is then updated. Finally, the remaining clusters
with cluster sizes that are greater than rmin will
select rmin samples from each remaining cluster.
The algorithm is detailed in Algo. 1.

A.2 Data Splits and Examples
As for the MiniPS2SLURP dataset construction,
we sample 40.5% of SLURP training set for
DA�L,t to train ΘA�L,t. For DA�T,t and DA�T,o

used in training Θ̃A�L, we use the same 40.5%
of the SLURP training set (having totally same
speeches to DA�L,t, but no semantics) and full
Mini-PS (32255 pairs) respectively to simulate a
real collected speech-to-text pair set DA�T .

As for the VoxPopuli2SLUE dataset construc-
tion, we sample 45% of SLUE-VoxPopuli fine-tune
set for DA�L,t to train ΘA�L,t. For DA�T,t and
DA�T,o used in training Θ̃A�L, we use the same

Algorithm 1 Greedy-Based Sample Selection

Input: R clusters with cluster sizes that are
[l1, l2, ..., lR] respectively, and a pre-set ex-
pected sampling size N that is smaller than
the sum of [l1, l2, ..., lR].

1: Initialize the number of remaining clusters to
be selected, R̂ = R

2: Initialize the number of remaining samples to
be selected: N̂ = N

3: Initialize the minimum size requirement for
each cluster: rmin = b N̂

R̂
c

4: Sort l = [l1, l2, ..., lR] from small to large, and
represent their sorted index list as l̂, where
l[l̂[i]] ≤ l[l̂[i+ 1]]

5: Initialize an empty list p to save the cluster
index with cluster size smaller than rmin

6: Initialize an empty list rsel to save the selected
samples

7: Initialize i = 0
8: while l[l̂[i]] < rmin & i 6= R do
9: l̂[i]→ p

10: all samples in l̂[i]-th cluster→ rsel
11: N̂ = N̂ − l[l̂[i]]
12: R̂ = R̂− 1
13: rmin = b N̂

R̂
c . Update rmin

14: i = i+ 1
15: end while
16: Initialize j = 0
17: while j 6= R do
18: if l̂[j] not in p then
19: rmin samples in l̂[i]-th cluster→ rsel
20: j = j + 1
21: end if
22: end while
Output: rsel

45% of SLUE-VoxPopuli fine-tune set (having to-
tally same speeches to DA�L,t, but no semantics)
and full VoxPopuli (182466 pairs) respectively to
simulate a real collected speech-to-text pair set
DA�T .

We list data examples in Tab. 5.

A.3 License

Our datasets are built on the SLUE-
VoxPopuli (Shon et al., 2022) (using CC0
license), VoxPopuli (Wang et al., 2021) (using CC
BY 4.0 license), SLURP (Bastianelli et al., 2020)
(using CC BY 4.0 license), and Mini-PS (Galvez
et al., 2021) (using CC-BY-SA and CC-BY



Dataset Text Example Speech Example Label (Semantics) Example
SLURP event remaining mona Tuesday a speech respective to the text {’scenario’: ’calendar’| ’ac-

tion’: ’set’| ’entities’: [{’type’:
’event_name’| ’filler’: ’mona’}|
{’type’: ’date’| ’filler’: ’tues-
day’}]}

Mini-PS are there any other comments
but you would don’t have a any
opposition to the language itself
it’s fine ok ok any other com-
ments ok should we go

a speech respective to the text N/A

SLUE-VoxPopuli better enforcement of the eu an-
imal welfare legislation is one
of the key priorities for animal
welfare and the commission has
invested substantial resources in
pursuit of this aim.

a speech respective to the text Semantics: {’entities’: [{’type’:
’ CARDINAL ’| ’filler’: ‘one’}|
{’type’: GPE’| ’filler’: ‘eu’}]}

VoxPopuli eu pharmaceutical legislation
contains a number of tools to fa-
cilitate early access to medicines
for patients with unmet medical
needs.

a speech respective to the text N/A

Table 5: Sample examples from each data set used in our experiments.

4.0 licenses). Considering these licenses, our
usage of these existing datasets is consistent
with their licenses. According to these licenses,
VoxPopuli2SLUE is CC BY 4.0 license, and
MiniPS2SLURP is CC-BY-SA and CC-BY 4.0
licenses.

For the MiniPS dataset, we will release the data
once our paper is published, which is allowed by
its license.

A.4 Implementation Details

Our work is implemented on SpeechBrain (Ra-
vanelli et al., 2021). The NLU model ΘT�L,t is
trained by 80% of DT�L,t and validated by 10%
of DT�L,t. The SLU model training also uses
the same dataset split ratio. We train NLU for
20 epochs and SLU for 35 epochs, and the pa-
rameters performing the best on the validation set
will be kept. We set the K-Means cluster num-
bers as 100 in our both two dataset text embedding
spaces, where these text clusters will be used for the
MCSS as the text modal cluster results of DT�L,t.
For MCSS, we set the numbers of audio clusters,
semantic types, and multi-view cluster numbers
R as 100, 53, 30 in the MiniPS2SLURP setting
and 100, 18, and 30 in the VoxPopuli2SLUE, re-
spectively. Each of the SLU models and NLU
models in our experiments consists of an encoder
and a decoder. Each SLU encoder is the Hu-
BERT encoder (Hsu et al., 2021). Each NLU
encoder is either LSTM (Hochreiter and Schmid-
huber, 1997) or BERT (Devlin et al., 2018) en-

coder. For the SLU and NLU decoders, they are
both attentional RNN decoders (Bahdanau et al.,
2014). To reproduce our main results for both
GloVe-based and SentBERT-based in Tab. 2, we
set β = γ = α = 0.1, τ = 0.55, wT = wL = 10,
wA = 1 and N = 35000 on MiniPS2SLURP;
on VoxPopuli2SLUE, we set β = γ = α = 0.1,
τ = 0.75, wT = wL = wA = 1 and N = 5556.
The reported results are obtained from a single run.

A.5 Case Study

We also show case studies of our Θ̃A�L on the two
datasets, shown in Table 6.

A.6 Parameter analyses

The parameter analysis of MCSS and CMSN are
respectively shown in Figure 6 and Figure 7.

For MCSS, from the Figure. 6, which shows the
parameters of the coefficients of MCSS, wT , wL

and wA, we can find below.
1. wT , wL, and wA all impact the performance of
MCSS. The figure shows performance variant to
different weights of wT , wL, and wA.
2. Considering all three views leads to better per-
formance. Among the cases shown in the (2) sub-
figure, we see that wT = wA = wL = 1 leads
to better performance than other single-view cases.
This shows the benefit of comprehensively consid-
ering three views.

For CMSN, we change one parameter at once
and keep the rest parameters fixed; we show each
of the four parameters on VoxPopuli2SLUE, from
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(3). Parameter Analysis on W (Type=Equal)
A L(WT = 5, WS = 1,WA = 1)
A L(WT = 1, WS = 5,WA = 1)
A L(WT = 1, WS = 1,WA = 5)
A L(WT = 1, WS = 1,WA = 1)

Figure 6: Parameter analysis of MCSS on VoxPopuli2SLUE, where BERT-based ΘT�L,t is used. All groups have
‖DA�T,t‖ = 59 and ‖DA�T,o‖ = 5461 for fair comparison.
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(1). Parameter Analysis on 
A L(w/o MCSS, = 0.01)
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(2). Parameter Analysis on 
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(3). Parameter Analysis on 
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(4). Parameter Analysis on 
A L(w/o MCSS, = 0.35)
A L(w/o MCSS, = 0.55)
A L(w/o MCSS, = 0.75)
A L(w/o MCSS, = 0.95)

Figure 7: Parameter analysis of CMSN on VoxPopuli2SLUE, where LSTM-based ΘT�L,t is used. All groups
have ‖DA�T,t‖ = 68 and ‖DA�T,o‖ = 5489 for fair comparison.



Audio (Shown by its
respective text)

Ground-Truth
Semantic Label

Θ̃A�L (w/o CMSN,
w/o MCSS) Pre-
dicted Label

Θ̃A�L (w/o MCSS)
Predicted Label

Θ̃A�L Predicted La-
bel

MiniPS2SLURP
how long does it take
to make vegetable
lasagna

’scenario’: ’cooking’,
’action’: ’recipe’,
’entities’: [{’type’:
’food_type’, ’filler’:
’vegetable lasagna’}]

’scenario’: ’news’,
’action’: ’query’,
’entities’: [{’type’:
’news_topic’, ’filler’:
’election’}, {’type’:
’date’, ’filler’: ’mon-
day’}]

’scenario’: ’recom-
mendation’, ’action’:
’locations’, ’entities’:
[{’type’: ’busi-
ness_type’, ’filler’:
’restaurant’}]

scenario’: ’cooking’,
’action’: ’recipe’,
’entities’: [{’type’:
’food_type’, ’filler’:
’cookies’}]

’remind me the meet-
ing with allen on fif-
teenth march’

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting}, {’type’:
’person’, ’filler’:
’allen’}, {’type’:
’time’, ’filler’: ’fif-
teenth march’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’relation’, ’filler’:
’wife’}, {’type’:
’date’, ’filler’:
’march’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’date’, ’filler’: ’march
fifth’}]

’scenario’: ’calen-
dar’, ’action’: ’set’,
’entities’: [{’type’:
’event_name’, ’filler’:
’meeting’}, {’type’:
’person’, ’filler’:
’allen’}]

can i please have the
weather for tomorrow
here in costa mesa

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’to-
morrow’}, {’type’:
’place_name’, ’filler’:
’costa mesa’}]

’scenario’: ’calendar’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}, {’type’: ’time’,
’filler’: ’eight am’},
{’type’: ’date’, ’filler’:
’tomorrow’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}, {’type’: ’time’,
’filler’: ’nine am’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’date’, ’filler’: ’tomor-
row’}]

’should i take my rain-
coat with me now’

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’raincoat’}]

’scenario’: ’play’, ’ac-
tion’: ’audiobook’,
’entities’: [{’type’:
’media_type’, ’filler’:
’audiobook’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’rain’},
{’type’: ’date’, ’filler’:
’today’}]

’scenario’: ’weather’,
’action’: ’query’,
’entities’: [{’type’:
’weather_descriptor’,
’filler’: ’raining’}]

VoxPopuli2SLUE
second i do not be-
lieve in the minsk
group but i believe
that the eu in the per-
son of the high rep-
resentative has the ca-
pacity to broker the
negotiations.

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’org’, ’filler’:
’minsk group’},
{’type’: ’ordinal’,
’filler’: ’second’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’secondly’},
{’type’: ’ordinal’,
’filler’: ’secondly’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’secondly’}]

’entities’: [{’type’:
’gpe’, ’filler’: ’eu’},
{’type’: ’ordinal’,
’filler’: ’second’}]

what can be done to
ensure that the re-
vision process goes
smoothly and is fi-
nalised before one
may two thousand and
fifteen as specified in
article nineteen of the
multiannual financial
framework regulation
so as to avoid losi ng
uncommitted amounts
from?

’entities’: [{’type’:
’law’, ’filler’: ’arti-
cle nineteen of the
multiannual financial
framework’}, {’type’:
’date’, ’filler’: ’one
may two thousand and
fifteen’}]

’entities’: [{’type’:
’date’, ’filler’:
’two thousand
and twenty’},
{’type’: ’date’,
’filler’: ’two thousand
and twenty’}]

’entities’: [{’type’:
’date’, ’filler’: ’two
thousand and fifty’}

’entities’: [{’type’:
’date’, ’filler’: ’two
thousand and fif-
teen’}]

Table 6: Case studies of Θ̃A�L on two datasets, where red fonts show wrong predicted tokens.

which, we find that β = γ = α = 0.1 and τ =
0.75 perform the best.


