
Semi-Supervised Dialogue Abstractive Summarization via High-Quality
Pseudolabel Selection

Jianfeng He1,2∗, Hang Su1, Jason Cai1, Igor Shalyminov1, Hwanjun Song1, Saab Mansour1
1 AWS AI Labs
2 Virginia Tech

jianfenghe@vt.edu, {shawnsu, cjinglun, shalymin, saabm}@amazon.com

Abstract

Semi-supervised dialogue summarization
(SSDS) leverages model-generated summaries
to reduce reliance on human-labeled data and
improve the performance of summarization
models. While addressing label noise, previous
works on semi-supervised learning primarily
focus on natural language understanding
tasks, assuming each sample has a unique
label. However, these methods are not directly
applicable to SSDS, as it is a generative task,
and each dialogue can be summarized in
different ways. In this work, we propose
a novel scoring approach, SiCF, which
encapsulates three primary dimensions of
summarization model quality: Semantic
invariance (indicative of model confidence),
Coverage (factual recall), and Faithfulness
(factual precision). Using the SiCF score, we
select unlabeled dialogues with high-quality
generated summaries to train summarization
models. Comprehensive experiments on three
public datasets demonstrate the effectiveness
of SiCF scores in uncertainty estimation and
semi-supervised learning for dialogue summa-
rization tasks. Our code is available at https:
//github.com/amazon-science/
summarization-sicf-score.

1 Introduction

Dialogue summarization generates concise sum-
maries of dialogues, helping users quickly under-
stand key points without navigating through com-
plex contexts (Feng et al., 2021). This study priori-
tizes abstractive summarization, which offers more
flexibility than extractive approaches (Gupta and
Gupta, 2019; Wong et al., 2008). Despite its wide
applicability in scenarios like meetings and casual
conversations, dialogue summarization faces chal-
lenges such as scarcity of annotations and high
annotation costs. However, the proliferation of pre-
trained models and unlabeled dialogues offers a so-

∗The work was done during an AWS AI Labs internship.

lution. In this paper, we explore Semi-Supervised
Dialogue Summarization (SSDS) (Chen and Yang,
2021), aiming to enhance dialogue summarization
by a small labeled dataset alongside a large collec-
tion of unlabeled dialogues.

Previous SSDS research (Chen and Yang, 2021)
has used data augmentation to increase the size of
both labeled and unlabeled dialogue datasets, but
the issue of pseudolabel noise has been largely over-
looked. Specifically, an initial model fine-tuned on
labeled samples is used to generate pseudolabels
for unlabeled samples. Then, the unlabeled sam-
ples and their pseudolabels are used to train the
semi-supervised model (Rizve et al., 2021). How-
ever, the imperfections of the initial model can lead
to pseudolabel noise, such as hallucination and
missing key information. Pseudolabel noise is a
big concern in semi-supervised learning because
training on pseudolabels with significant noise can
deteriorate model performance. Thus, we aim to
address pseudolabel noise in SSDS in this research.

Many existing solutions for pseudolabel noise
estimation and mitigation are designed for under-
standing tasks (e.g., classification (Cordeiro and
Carneiro, 2020)), and they are not directly appli-
cable to SSDS due to inherent diversity of ground
truth summaries. Specifically, these solutions, such
as Mix-Up in Mix-Match (Berthelot et al., 2019),
assume each sample has a unique label, represent-
ing a single attribute like a semantic class. In con-
trast, SSDS is a generation task where each dia-
logue can be summarized in different ways. For
instance, summaries like “the audience is happy
to hear the news” and “the news makes the audi-
ence glad” convey the same message with different
wording. As a result, SSDS, like other generation
tasks, does not have a unique label per sample. This
distinction makes previous pseudolabel noise so-
lutions unsuitable for SSDS. Thus, we need a new
and generalized pseudolabel noise measurement so-
lution that considers label diversity in SSDS, with-
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out relying on ground truth summaries, as unla-
beled dialogues lack them.

To achieve this, we propose assessing pseudola-
bel quality: a predicted summary with higher qual-
ity indicates less noise in pseudolabels. We thus
propose the SiCF score, which measures summary
quality based on common characteristics of high-
quality summaries, such as model confidence, in-
formation coverage, and faithfulness to the origi-
nal dialogues. SiCF comprises three components:
“Semantic invariance” assesses model confidence
at the text level, “Coverage” evaluates key informa-
tion captured at the word level, and “Faithfulness”
measures alignment with the original dialogues
at the sentence level. As shown in Figure 1, we
then rank and select the unlabeled dialogues with
high-quality pseudolabels as indicated by the SiCF
score. Besides, since uncertainty estimation is a
representative way to estimate the model predic-
tion quality (Gawlikowski et al., 2023; He et al.,
2023b) and Bayesian Neural Network (BNN) is an
effective uncertainty estimation method (Mukhoti
et al., 2023), we propose a variant-length multi-
label BNN for our SiCF score. Our contributions
are as below.

• We propose the SiCF score framework to mea-
sure the quality of predicted summaries based
on these three key characteristics. To the best
of our knowledge, we are the first to compre-
hensively evaluate summary quality without
relying on ground truth summaries.

• We introduce a variant-length multi-label
BNN uncertainty estimation technique used
in the SiCF score. In contrast, conventional
BNN (Mukhoti et al., 2023) is designed for
fixed-length single-label cases, which do not
align with the requirements of our task.

2 Related Work

Semi-supervised text summarization. Please
refer to Sec. A.1 for the related work of Semi-
supervised text summarization.
Semi-supervised dialogue summarization. Semi-
supervised dialogue summarization is also under-
explored, although some works focus on guiding
dialogue summarization (Liu and Chen, 2021), im-
proving model performance via human feedback
(Chen et al., 2022), and enhancing factual consis-
tency between ground-truth and generated sum-
maries (Chen et al., 2021a).

In terms of semi-supervised extractive dialogue
summarization, Mishra et al. (2023) employ GPT
3.5 for quality assessment based on token probabili-
ties. Zhuang et al. (2023) introduce self-supervised
pre-training to enhance BERT’s ability to contextu-
alize dialogue representations.

Regarding our focus, that is the semi-supervised
abstractive dialogue summarization, CODA (Chen
and Yang, 2021) is proposed to address SSDS us-
ing data augmentation. While data augmentation
can expand the size of both labeled and unlabeled
data, it overlooks challenges posed by pseudolabel
noise, a prevalent issue in semi-supervised learn-
ing. Unlike previous SSDS models that overlooked
pseudolabel noise, our goal is to enhance SSDS
performance by measuring pseudolabel quality and
effectively eliminating unreliable pseudolabels.

Solution of pseudolabel noise in semi-supervised
learning. Many methods have been proposed for
label noise in natural language understanding tasks
(Cordeiro and Carneiro, 2020; Berthelot et al.,
2019; He et al., 2023a; Lei et al., 2022). However,
most of these methods are not directly applicable
to SSDS, because this generation task has diverse
ground truth summaries for each dialogue. While
some of these methods have potential to be applied
towards SSDS, like teacher-student knowledge dis-
tillation model for noisy text summarization (Liu
et al., 2020), they do not consider diversity of sum-
maries within SSDS. Rizve et al. (2021) have a
similar task setting to ours, but their task is multi-
label image classification, which still provides a
unique label for each image. Wan et al. (2023) fo-
cus solely on model generation without considering
the interaction with context (e.g., dialogue in our
task). In contrast, we consider both model predic-
tion itself by semantic invariance and the relation
between generations and context via coverage and
faithfulness.

As for injecting noise into the dialogues or pseu-
dolabels (He et al., 2019), it focuses on improving
the model’s robustness through training with this
injected noise and aims to mitigate the impact from
noise. In contrast, our work aims to measuring the
extent of sample noise. Furthermore, they need
to retrain the model, and the added noise might
degrade the model’s performance. In contrast, our
work does not require retraining the model and will
not harm its performance.

Summary quality. Please refer to Sec. A.1 for the
related work of “Summary quality”.
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Figure 1: A global view of our SSDS framework using the semantic invariance, coverage, and faithfulness combined
score (SiCF). Each row in the colored matrix represents diverse predicted summaries for a dialogue. For each
unlabeled dialogue, the predicted summary closest to mean embedding is chosen. We then rank the chosen predicted
summaries by the SiCF scores and select a portion of them. The selected <unlabeled dialogues, pseudolabels> and
all human-labeled pairs are used for our target model learning. The detailed SSDS framework is outlined in Sec. 4.1.

3 Problem Setting

We are given a dialogue set Dl with annotated sum-
maries and a dialogue set Du without annotations.
Dl and Du belong to the same domain, as our focus
is not domain generalization. Given a pretrained
dialogue summarization model G0, we leverage
Dl and some or all data of Du to fine-tune G0,
obtaining a target dialogue summarization model
Ĝ. We aim to accurately evaluate the quality of
pseudolabels for unlabeled samples, enabling us to
select higher-quality unlabeled data for training an
improved model Ĝ.

4 Our Model

4.1 Overview of SSDS via our SiCF Score

The proposed framework for SSDS with SiCF
scores is shown in Figure 1. We begin with a pre-
trained dialogue summarization model G0, such
as DialogLED (Zhong et al., 2022a) 1. We first
fine-tune G0 on dialogue-summary pairs in Dl. To
assess pseudolabel quality, we use uncertainty es-
timation, which is an effective way to measure
the model prediction quality (Gawlikowski et al.,
2023). Bayesian Neural Network (BNN) is an ef-
fective method for uncertainty estimation and is
often approximated by ensemble (Gal and Ghahra-
mani, 2016). We generate k diverse summaries for
each unlabeled dialogue from Du by beam search
sampling (Vijayakumar et al., 2016). Next, based
on these diverse summaries, we calculate our SiCF
score for each unlabeled dialogue to evaluate its
summary quality. This score includes three aspects:
Semantic invariance, Coverage, and Faithfulness.
Moreover, we choose a summary for each dialogue
based on the embedding that is closest to the mean

1We select DialogLED for its superior performance and
hardware efficiency, facilitating accessibility for other re-
searchers using our setup.

of its all diverse summary embeddings. Next, we
rank and select high-quality dialogue-pseudolabel
pairs based on the SiCF scores. Finally, we fine-
tune G0 with the labeled dialogues and the selected
unlabeled dialogues with pseudolabels to train the
target dialogue summarization model Ĝ.

Our work focuses on (1) how to obtain SiCF
scores that accurately measure the quality of pre-
dicted summaries based on uncertainty estimation,
and (2) how to use SiCF scores to select high-
quality unlabeled dialogues and then improve Ĝ.

We detail the reasons for choosing semantic in-
variance, coverage, and faithfulness in Sec. A.2.1.

4.2 SiCF Score: Semantic Invariance

Kuhn et al. (2023) propose semantic uncertainty
based on semantic invariance for text generation
quality evaluation. Higher semantic invariance
means smaller semantic divergence between the
k diverse generations of a sample, and thus indi-
cating a higher quality in generations’ semantics.
However, Kuhn et al. (2023) needs to cluster di-
verse generations for each sample, which is time-
consuming for large sample size.

Different from Kuhn et al. (2023), we propose
a variance-based method to measure the seman-
tic invariance without clustering. This is because
variance is also an effective uncertainty estimation
method when the task has no unique ground truth
(e.g., text summarization) (Chen, 2019). Specifi-
cally, given a dialogue from Du with k diverse pre-
dicted summarizations s = {s1, s2, ..., sk}, we use
a pretrained encoder model (e.g., RoBERTa (Liu
et al., 2019)) to produce their text embeddings as
e1, e2, ..., ek, we get a semantic invariance score
λSeIn for the unlabeled dialogue by the variance
of its diverse summary embeddings as follows,

λSeIn = var(es1, e
s
2, ..., e

s
k) (1)
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Figure 2: The global view of our coverage and faithfulness scores in our SiCF score.

Our variance operation is more efficient
than Kuhn et al. (2023), as variance achieves a
time complexity of O(k) compared to their O(k2).

4.3 SiCF Score: Coverage

Since a good summary typically covers key details
in a dialogue, we design a coverage score to mea-
sure the quality of a summary. Unlike coverage
in Huang et al. (2023), ours does not depend on
ground truth summaries.

To get our coverage score, we need to extract
key details from a dialogue. Based on our obser-
vation (illustrated in Sec. A.2.2) and conciseness
of summaries, we use the nouns in a dialogue to
represent its key details. This is because the nouns
in a dialogue carry the information to distinguish
themselves from other dialogues.

Concretely, we use a pretrained POS tagging
model (i.e., Flair (Akbik et al., 2019)) to extract
nouns from a dialogue as its key details. Also,
key details (nouns) can be extracted from a cor-
responding summary for comparison. We use the
T d = [td1, t

d
2, ..., t

d
p] to represent a sequence of noun

embedding from a dialogue d, which has p nouns.
Similarly, we use the T s = [ts1, t

s
2, ..., t

s
q] to repre-

sent a sequence of noun embedding of a summary s.
As shown in Figure 2, we then calculate the similar-
ity matrix V t ∈ Rp×q between noun embeddings
T d and T s,

V t = Dist(T d, T s) (2)

where Dist is pair-wise Euclidean distance. We
choose Euclidean distance, as we expect a small
value means high quality. A smaller value in V t

means better similarity between a noun of the di-
alogue and a noun of its one summary. Thus, we
then apply row-level min operation on V t to get
coverage vector v̂t ∈ Rp, that is v̂t = min(V t),
where each element indicates the coverage degree

between a predicted summary and a noun in the
dialogue. We further weight the v̂t as ṽt = wt · v̂t,
where ṽt ∈ Rp. The wt ∈ Rp is the weight of each
noun in dialogue, measured by noun’s occurrence.
Since speaker names in dialogues are proper nouns
that often repeat, we take the maximum occurrence
of proper nouns as 1 to prevent bias in the model
due to speaker names.

Since we have k diverse generated summaries for
each dialogue, we can have Ṽ t = [ṽt1, ṽ

t
2, ..., ṽ

t
k] ∈

Rk×p, where ṽti is a coverage vector of i-th diverse
generated summary for the dialogue. Since cover-
age score should be a scalar, we use a function Φ
to get a coverage score λcov,

λcov = Φ(Ṽ t) (3)

where Φ can be mean, BNN, or their combination
(m+BNN), which will be introduced in Sec. 4.5.

4.4 SiCF Score: Faithfulnesss

Because a good summary should adhere to the
key point of the dialogue, we consider faithful-
ness, which is the adherence degree between the
key points of a dialogue and its summaries. How-
ever, using details (e,g., nouns) as key points may
omit the connection of state words, like "not" and
"disagrees". But using the text-level embedding is
too general to miss the fine-grained information,
such as SummaC (Laban et al., 2022). As a result,
we consider sentence-level key points, because it
keeps both state words and fine-grained informa-
tion. Unlike faithfulness in Huang et al. (2023),
ours does not depend on ground truth summaries.

Specifically, given a dialogue with h sentences
and a predicted summary with z sentences, we have
a sequence of dialogue sentence embeddings Bd =
[bd1, b

d
2, ..., b

d
h] and a sequence of summary sentence

embeddings Bs = [bs1, b
s
2, ..., b

s
z] for them by an en-

coder of a pretrained Natural Language Inference



(NLI) model, which is effective in faithfulness-
check models (e.g. FactCC (Kryscinski and Mc-
Cann, 2021) and SummaC (Laban et al., 2022)). As
shown in Figure 2, we utilize the pretrained NLI
model to obtain a faithfulness matrix V b ∈ Rh×z

as follows.

V b = NLI(Bd, Bs) (4)

The h× z shape is built by pair-wise comparing
h sentences in a dialogue to z sentences in a sum-
mary. Each element in NLI(Bd, Bs) is obtained
by first calculating the NLI negative and positive
results between i-th dialogue sentence embedding
bdi and j-th summary sentence embedding bsj , fol-
lowed by returning the NLI result of these two
sentences. The NLI result in our work is negative
score subtracting the positive score, which is sim-
ilar to SummaC. As a result, a smaller element in
V b means better faithfulness between a dialogue
sentence and a summary sentence.

Next, similar to coverage score, we apply row-
level min operation on V b and have v̂b ∈ Rh. Each
element in V̂ indicates the faithfulness agreement
between the summary sentences and a dialogue
sentence. We further weight v̂b as ṽb = v̂b · wb,
where wb ∈ Rh has each element as the noun oc-
currences in a dialogue sentence. We also limit
the proper noun occurrences to a maximum of 1
because names in the dialogue are frequently men-
tioned and less significant than other nouns.

Since there are k summaries for each dialogue,
we can then obtain Ṽ b = [ṽb1, ṽ

b
2, ..., ṽ

b
k] ∈ Rk×h.

Finally, similar to Eq. 3, the faithfulness score for
the unlabeled dialogue is as follows,

λfai = Φ(Ṽ b) (5)

Operation Φ will be introduced in Sec. 4.5.
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Figure 3: The diagram of the variant-length multi-label
BNN. It uses a Ṽ column as an example to obtain an
entropy value. This example sets k = 3. The λcov/fai

is the sum of the entropy values from all Ṽ columns.

4.5 Mean and Bayesian Neural Network
Once we have a coverage matrix Ṽ t ∈ Rk×p or a
faithfulness matrix Ṽ b ∈ Rk×h, we propose three

types of operations Φ to calculate coverage score
or faithfulness score, which all measure prediction
quality. For simplicity, we let Ṽ denote Ṽ t or Ṽ b.
Mean. As a straightforward method (Zhang et al.,
2024), we consider the mean value of Ṽ to be the re-
quired scalar score, that is, coverage or faithfulness
score λcov/fai = mean(Ṽ ). In this case, λcov/fai

represents the average score across all k diverse
summaries, measuring coverage or faithfulness.
Multi-label BNN. However, the mean operation
only considers the values themselves but ignores
the distribution between [ṽ1, ṽ2, ..., ṽk]. BNN has
been an effective distribution-based uncertainty es-
timation method and is suitable for quality assess-
ment (Gawlikowski et al., 2023). However, BNN is
originally designed for the fixed-length single-label
case, while our case is for variant-length multi-
label. Concretely, each element in ṽ can be taken
as a label (a noun or a key point) and a good sum-
mary should belong to each label, thus our case
is multi-label. Besides, each dialogue might have
different sizes of nouns (p) and key points (h), and
hence our case has variant lengths. Thus, we pro-
pose a multi-label BNN to consider the distribution
as below,

λcov/fai =

p (or h)∑
l=1

H[Yl|x,D] (6)

where we treat the multi-label problem as p or h bi-
nary single-label problem. Concretely, we first con-
duct min-max normalization on Ṽ . Then, shown as
in Figure 3, we get Yl ∈ Rk×2 by ṽl ∈ Rk which is
a column of the Ṽ . Yl is a concatenation of k vec-
tor [Ṽi,l, 1− Ṽi,l] for i-th predicted summary in l-th
label. Eq. 6 first calculates the mean Ȳl ∈ R1×2 of
Yl ∈ Rk×2 for l-th label, followed by calculating
the entropy of Ȳl. Finally, the sum of all p or h la-
bels’ entropy values is λcov/fai. We use sum rather
than mean because our task is variant length and
we expect all labels’ uncertainty to be accumulated.
More detail is in Sec. A.2.3.
m+BNN. The mean operation only considers the
prediction quality from the view of logits. The
BNN method only considers the prediction quality
from the view of uncertainty estimation. Therefore,
we propose m+BNN to multiply them as below,

λcov/fai = mean(V̄ )×
p (or h)∑
l=1

H[Y l|x,D] (7)



Table 1: Table of data splitting. The numbers in brackets are the sample size.

Data split setting with small-size labeled data Data split setting with medium-size labeled data
Labeled data size Unlabeled data size Labeled data size Unlabeled data size

SAMSUM 1% (147) 50% (7366) 5% (736) 50% (7366)
DIALOGSUM 1% (124) 50% (6230) 5% (623) 50% (6230)
TODSUM 2% (157) 90% (7103) 10% (789) 90% (7103)

4.6 Fine-Tune on Unlabeled Dialogues
Selected by SiCF Scores

Once we have obtained λsein, λcov, and λfai, we
would like to merge them into a SiCF score. How-
ever, these three scores are in different scales.
Therefore, we use the permutation of pseudolabels
based on each of these three scores.

Concretely, given a λ ∈ {λsein, λcov, λfai}, we
sort the pseudolabels in descending order based
on λ. As a result, an order number δ is positively
correlated to the quality of pseudolabel, because
a lower λ means higher quality. To calculate the
SiCF score, we then proceed as follows,

λSiCF = (αδSeIn + βδcov + γδfai)/3N (8)

where α, β, and γ are hyperparameter. A larger
λSiCF means higher quality. As shown in Figure 1,
we select a certain ratio (e.g., 25%) of unlabeled di-
alogue by the SiCF scores on the chosen predicted
summaries, which is described in Sec. 4.1. Finally,
we fine-tune G0 on selected <unlabeled dialogues,
pseudolabel> and all labeled pairs to get our target
dialogue model Ĝ.

5 Experiments

5.1 Task setting
Our goal is to select a certain ratio of <unlabeled
dialogues, pseudolabels> with high SiCF scores,
which are used to fine-tune the baseline model to-
gether with all labeled samples. In addition, we are
interested in the effectiveness of SiCF score from a
view of uncertainty estimation.

5.2 Data
We conduct experiments on three datasets: (1)
SAMSUM (Gliwa et al., 2019) is a daily chat do-
main dataset with 14732 training samples, 818 eval-
uation samples and 819 testing samples. (2) DI-
ALOGSUM (Chen et al., 2021b) is a dataset in
real-life scenarios with training, evaluation, and
testing sample sizes of 12460, 500, and 500, re-
spectively. (3) TODSUM (Zhao et al., 2021) is a
dataset with task-oriented dialogues in seven do-
mains with training, evaluation, and testing sample

sizes of 7460, 999, and 999, respectively. We split
each dataset into labeled and unlabled portions, and
experiment with two settings (small and medium-
size labeled setting) controlling for the size of the
labeled data as shown in Table 1.

5.3 Baselines

We compare our proposed method to two baselines:
(1) Random Rank: a method using the same cho-
sen sampling ratio but using a random rank, (2)
Full Unlabeled: a method using all unlabeled dia-
logues without any selection, which has been veri-
fied to be a strong baseline in selective learning (He
et al., 2023a). We also calculate an upper bound for
ranking termed pseudo oracle, where the ground
truth summary is used to score the pseudo sum-
maries according to the BERTScore-F.

5.4 Metrics

Metric for uncertainty estimation, force-truth
evaluation, evaluates the quality score from a view
of uncertainty estimation (Zhang et al., 2019b;
He et al., 2020, 2023c). Concretely, it simulates
the performance improvement of quality scores
with human involvement. We measure F-values
of BERTScore, ROUGE-1, 2, and L at different
elimination ratios. Concretely, for N testing sam-
ples and an elimination ratio r, the most uncertain
predicted summaries in size of N × r are set as
ground truth summaries. The more accurate the un-
certainty scores we obtain, the more inaccurate pre-
dicted summaries will be replaced by ground truth
summaries under the same r, resulting in a better
summarization metric (e.g., ROUGE-1) score. The
dialogue summary metric score at a 0% eliminated
ratio represents the original model’s summariza-
tion performance. The summary metric scores at
10%-90% elimination ratios reflect the uncertainty
estimation results. We report the mean of metric
performance between 0-50% and between 0-90%.
Metrics for SSDS are BERTScore (Zhang et al.,
2019a), ROUGE-1, -2, and -L (Lin, 2004). Besides,
since we have calculated pseudo oracle, we can get
SSDS improved ratios, which indicates the im-
proved degree compared to pseudo oracle. A SSDS



Table 2: Uncertainty estimation results of SiCF score on three datasets in terms of BERTScore-F. The “0-50” and
“0-90” are the mean of BERTScore-F with eliminated ratio range 0%-50% and 0%-90%. In the medium-size setting,
the TODSUM has a mean and standard deviation as shown in Table 14.

ROUGE-1 SAMSUM(1:50) DIALOGSUM(1:50) TODSUM(2:90) SAMSUM(5:50) DIALOGSUM(5:50) TODSUM(10:90)
0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90%

Random Rank 57.92 69.13 58.03 69.21 77.66 83.65 59.39 70.21 59.46 70.24 81.05 86.11
SiCF(mean) 58.90 70.28 58.85 70.08 78.78 84.80 60.45 71.44 60.42 71.29 82.05 87.17
SiCF(BNN) 59.34 70.64 59.57 70.82 78.51 84.64 60.87 71.80 61.03 71.93 82.08 87.27
SiCF(mean+BNN) 59.38 70.69 59.25 70.46 78.85 84.91 60.80 71.74 60.78 71.68 82.23 87.38
SiCF(m+BNN-s) 59.47 70.78 59.37 70.61 78.95 84.97 60.95 71.89 60.74 71.68 82.27 87.43
Pseudo Oracle 61.35 72.88 61.59 72.98 81.56 87.70 62.95 74.07 62.98 74.00 84.98 90.16

Table 3: SSDS results on SAMSUM and TODSUM. The values in the bracket are SSDS improved ratios. ROUGE-L
is listed in Tables 6 and 7. In the medium-size setting, the TODSUM has a mean and standard deviation as shown in
Table 15. The SSDS results on DIALOGSUM are listed in Table 8.

Small-Size Labeled Data Medium-Size Labeled Data
ROUGE-1 ROUGE-2 BERTScore-F ROUGE-1 ROUGE-2 BERTScore-F

SAMSUM
Initial Fine-Tuned 43.90(0%) 18.49(0%) 43.74(0%) 46.81(0%) 20.46(0%) 45.74(0%)
Full Unlabeled 44.32(41%) 19.07(42%) 43.72(-3%) 47.76(62%) 21.84(91%) 47.02(81%)
Random Rank 44.98(105%) 19.32(60%) 44.39(112%) 47.65(55%) 21.13(44%) 46.66(58%)
SiCF (mean) 45.85(191%) 19.90(102%) 44.89(198%) 47.90(71%) 21.39(61%) 46.51(48%)
SiCF (BNN) 45.20(127%) 19.95(105%) 44.45(122%) 47.77(63%) 22.07(106%) 46.35(38%)
SiCF (m+BNN) 45.14(121%) 19.31(59%) 44.47(125%) 48.14(87%) 22.05(105%) 46.61(55%)
SiCF (m+BNN-s) 45.40(147%) 19.38(64%) 44.34(103%) 47.83(67%) 21.40(62%) 46.55(51%)
Pseudo Oracle 44.92(100%) 19.87(100%) 44.32(100%) 48.33(100%) 21.97(100%) 47.32(100%)

TODSUM
Initial Fine-Tuned 76.60(0%) 59.51(0%) 70.02(0%) 79.75(0%) 64.69(0%) 74.28(0%)
Full Unlabeled 77.02(16%) 59.86(9%) 70.57(13%) 80.00(6%) 64.99(5%) 74.30(0%)
Random Rank 76.91(12%) 59.43(-2%) 70.64(15%) 80.57(22%) 65.73(19%) 75.13(20%)
SiCF (mean) 77.94(53%) 61.01(40%) 71.72(43%) 81.08(36%) 66.70(37%) 75.75(34%)
SiCF (BNN) 76.64(1%) 59.66(4%) 70.53(12%) 82.01(61%) 67.90(59%) 76.74(58%)
SiCF (m+BNN) 77.01(16%) 59.92(11%) 70.91(22%) 80.93(32%) 66.32(30%) 75.78(35%)
SiCF (m+BNN-s) 76.45(-6%) 59.46(-1%) 70.64(15%) 81.22(39%) 67.14(45%) 76.15(44%)
Pseudo Oracle 79.09(100%) 63.19(100%) 73.96(100%) 83.43(100%) 70.10(100%) 78.48(100%)

improved ratio (IR) is defined as below, which is
similar to normalized WER in Gu et al. (2023),

IR =
MSm −MSini

MSora −MSini
(9)

where MSm is a method’s metric score, MSini is
the initial finie-tuned’s metric score, and MSora

is the pseudo oracle’s metric score. A higher im-
proved ratio signifies method superiority, further
explained in Sec. A.3.1.

5.5 Experimental Setting
We first only use all labeled dialogues to fine-tune
the pretrained DialougeLED (Zhong et al., 2022a)
model, which is called initial fine-tuned. For
SSDS, we set the selected ratio of unlabeled di-
alogues as 25% by default. The full unlabeled
method uses all (100%) unlabeled dialogues. k =
20, 8, 8 for SAMSUM, DIALOGSUM, and TOD-
SUM respectively. For uncertainty estimation, we
rank all unlabeled dialogues and replace the most
uncertain summaries with their ground truth sum-
maries with a given ratio from [0%, 10%, ..., 90%].

We set the α, β, γ to 1 by default, where parameter
analysis and search (based on ROUGE-1) are pre-
sented in Sec. 5.6.4. We abbreviate our searched
m+BNN results as m+BNN-s. The repetitive ex-
perimental setting is detailed in Sec. A.3.4.

5.6 Experimental Results

5.6.1 Uncertainty Estimation Results

We present our uncertainty estimation results on
SiCF scores in Table 2 and 16. In these tables,
we only list the ROUGE-1 and BERTScore-F. The
details of ROUGE-1, -2, -L, and BERTScore-F are
drawn in Figure 4, 5, 6, 7, 8 and 9 in appendix.
With these tables, we conclude as below.

SiCF score is an effective way to improve un-
certainty estimation. In the two tables, the SiCF
scores always outperform the random rank base-
line. For example, in Table 2, all six settings indi-
cate that the SiCF (m+BNN) improves at least 1
point BERTScore-F compared with random rank in
both small and medium-size labeled settings. This
shows that SiCF effectively quantifies the quality



of generated summaries by semantic invariance,
coverage, and faithfulness, surpassing the straight-
forward outcomes of the random baseline.

SiCF (m+BNN) performs better than SiCF
(mean) and SiCF (BNN) in the vast settings.
The difference between the three designs is slight,
with less than 1 point divergence. However,
SiCF (m+BNN) performs better than SiCF (mean)
and SiCF (BNN) in the vast settings, except the
ROUGE-1 on TODSUM (2:90) in Table 16. For
BERTScore-F in Table 2, BNN performs better
than m+BNN on DIALOGSUM, which verifies the
effectiveness of our designed variant-length multi-
label BNN. Nevertheless, the better performance
of SiCF (m+BNN) in the other two datasets still
indicates that a m+BNN is better in uncertainty
estimation in general.

5.6.2 SSDS Results
Table 3, 8 list SSDS results. We conclude below.

SiCF score is effective to improve SSDS. On
the two settings of SAMSUM, the three ways of
SiCF are generally beneficial for the SSDS com-
pared with random rank. Though the improvement
is less than 1 point, our SiCF shows a much bet-
ter SSDS improved ratio (198%) compared to ran-
dom rank (112%) and full unlabeled in terms of
improved ratio in BERTScore-F. For the medium-
size labeled settings of DIALOGSUM, only SiCF
(m+BNN) generally performs better than the ran-
dom rank but SiCF (mean) and SiCF (BNN) do
not. This indicates that the combination of mean
and multi-label BNN is effective. We do not report
SSDS results on DIALOGSUM 1:50, as its gener-
ated pseudolabels are too noisy for training, which
is detailed in the caption of Table 5. As for the
two settings of TODSUM, SiCF (BNN) generally
improves at least 2 point in terms of ROUGE-1,
2 and L compared to random rank in the medium
setting. These verify the effectiveness of our SiCF
score in improving SSDS by selecting unlabeled
dialogues via SiCF scores.

Our methods surpasses pseudo oracle due to
higher sample diversity. As a surprising find-
ing, in Table 3, our SiCF (m+BNN) is higher than
pseudo oracle in terms of ROUGE-1 (e.g., 45.14
VS. 44.92) and BERTScore-F in both SAMSUM
1:50 and DIALOGSUM 5:50 settings. The possible
reason is that the initial fine-tuned model might be
good at predicting a certain distribution of the un-
labeled dialogues. As a result, selected unlabeled
dialogues in the pseudo oracle may be less diverse

than those from SiCF (m+BNN).
Using all the unlabeled dialogues is not the

best choice because some samples have signifi-
cant pseudolabel noise. Compared to the results
of full unlabeled, all metrics generally indicate that
selecting 25% high-quality unlabeled dialogues is
better. This is because only a part of generated
pseudolabels is beneficial to the SSDS learning,
which is verified in Table 5. Thus, it is essential to
select high-quality <dialogue, pseudolabel> pairs.

5.6.3 Ablation Studies

We list our ablation studies in Tables 4, 19, and 20
for SAMSUM datasets with 1:50 setting. In the
tables, “SiCF” method uses all three components.
“Only sein”, “Only cov”, and “Only fai” are meth-
ods only using respective component. The two
table answer the below question.

Among the three components in the SiCF
score, the coverage score performs better, while
a combination of three parts achieves overall
improvement. Concretely, based on the two ta-
bles, using three components together generally
improves performance except in SiCF mean cases.
Its possible reason is that the pretrained model used
in faithfulness might not perform well in SiCF, as
the hallucination in text summarization is still a
challenging problem. But we believe future re-
search could improve the hallucination detection.
As a result, SiCF using BNN and m+BNN both
have results when using all three components.

Table 4: Ablation study of three components in SAM-
SUM 1:50 in terms of ROUGE-1. We use ± to connect
the mean and standard deviation among 4 times repeti-
tive experiments with different random seeds. The full
table is in Tables 19.

ROUGE-1 SiCF (m+BNN)
0-50% mean 0-90% mean

sein+cov+fai 59.932±0.015 71.151±0.031
only sein 59.533±0.011 70.675±0.010
only cov 59.811±0.010 71.022±0.005
only fai 59.104±0.004 70.037±0.004

5.6.4 Parameter Analysis & Human Eval

We conduct parameter analysis on TODSUM (2:90)
with SiCF (m+BNN), where its SSDS result is in
Table 21, and its uncertainty estimation results are
in Table 22. Plus, the parameter search results are
shown in Table 18. For more details, please refer
to Sec. A.3.5. Human evaluation is in Sec. A.3.7.



6 Conclusion

To make use of unlabeled data and measure gen-
erated summary quality for summarization model
training, we benchmark SSDS and uncertainty esti-
mation on dialogue summarization. We propose the
SiCF score, which measures semantic invariance,
coverage, and faithfulness of pseudolabels (gener-
ated summaries) at the text level, word level, and
sentence level, respectively. Furthermore, we ex-
tend BNN-based uncertainty estimation to a variant-
length multi-label setting. Our SiCF score can
enhance uncertainty estimation on dialogue sum-
marization and improve SSDS by up to +1-2%
ROUGE and BERTScore-F on SAMSUM (daily-
chat domain), TODSUM (task-oriented dialogues)
and DIALOGSUM (real-life scenario).

7 Ethical Consideration

This study pioneers the evaluation of summary
quality without relying on ground truth summaries.
During our study, we address the challenge of di-
verse ground truth summaries for dialogue summa-
rization in an innovative way.

Our research employs datasets that are publicly
available, ensuring transparency and accessibility.
The datasets integral to our work are utilized in
adherence to their respective licenses, which is ver-
ified in Sec. A.4.

All the datasets utilized in our study are devoid
of personal identification details. We advise that
any potential extensions of this research into do-
mains containing personal or sensitive information
should be conducted with strict adherence to robust
ethical guidelines.

8 Limitations

This paper introduces the SiCF score as a means of
evaluating the quality of generated summaries with-
out using ground truth summaries. However, SiCF
has a limitation: when we restrict the occurrence of
proper nouns to a maximum of one, it affects other
proper nouns that are not speaker names. There-
fore, we need to explore alternative approaches for
weighting each key detail and key point.
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A Appendix

A.1 More related work

Semi-supervised text summarization. There are
two general types of text summarization: extrac-
tive text summarization (Wong et al., 2008; Liu,
2019), which extracts the original sentences from
the text for summarization, and abstractive text
summarization (Liu and Lapata, 2019; Nallapati
et al., 2016), which directly generates summaries
from the given text. For semi-supervised text sum-
marization, Sahu et al. (2023) acknowledge that it
is heavily under-explored.

In terms of semi-supervised extractive text sum-
marization, Sahu et al. (2023) use a prompt-based
method to implement extractive summarization, but
their prompt is based on a subset of extracted sen-
tences rather than the full text. In contrast, our
work considers the full text.

In terms of abstractive text summarization,
Wang et al. (2023) employ transfer learning for
semi-supervised abstractive text summarization in-
stead of quality assessment. While Gidiotis and
Tsoumakas (2023) assess the quality of the gener-
ated summary, they measure the disagreement be-
tween each pair of generated summaries for a text
via Monte Carlo (MC) dropout (Gal and Ghahra-
mani, 2016). In contrast, our semantic invariance
has a lower time complexity due to no compari-
son among each pair. Additionally, our coverage
and faithfulness consider the relation between di-
alogues and generated summaries, while Gidiotis
and Tsoumakas (2023) do not.

Also related to unlabeled text, Tsvigun et al.
(2023) focus on active learning via the similarity
between labeled and unlabeled text. In contrast, we
focus on semi-supervised learning, and our SiCF
score considers the relation between pseudo labels
and unlabeled dialogues.
Summary quality. Summary quality measurement
can be divided into: with ground truth and with-
out ground truth. Previous quality measurement
methods mostly rely on availability of ground truth,
such as ROUGE Scores (Lin, 2004) and BERT
Scores (Zhang et al., 2019a). Additionally, criteria
like coverage and faithfulness were proposed as
metrics to evaluate summarization in Huang et al.
(2023), which also uses ground truth summary.
Faithfulness can also be evaluated Dreyer et al.
(2023) through automated evaluation, as proposed
in FactCC (Kryscinski and McCann, 2021) and
DOCNLI (Yin et al., 2021). Besides, coherence is

proposed in Zhong et al. (2022b). However, these
evaluations all require ground truth summaries. In
contrast, the SSDS task is inaccessible to ground
truth, and the measurement of summary quality
without relying on ground truth is underexplored.
Although semantic uncertainty was introduced to
assess generation quality from the view of uncer-
tainty (Kuhn et al., 2023), it is time-consuming and
overlooks the relationship between the generation
and context. Consequently, we propose a more ef-
ficient method for measuring semantic invariance.
Moreover, we are the first to comprehensively eval-
uate summary quality focusing on semantic invari-
ance, coverage, and faithfulness, without relying
on ground truth summaries.

A.2 Model

A.2.1 Reasons for choosing semantic
invariance, coverage, and faithfulness

Inspired by Huang et al. (2023), our justification for
choosing semantic invariance, coverage, and faith-
fulness is based on three key requirements. Firstly,
we aim to perform quality analysis within the gen-
erated summaries (semantic invariance) and eval-
uate the quality between the generated summaries
and the quality analysis (coverage and faithfulness).
Secondly, we aim to conduct quality evaluations at
the token level (coverage), sentence level (faithful-
ness), and text level (semantic invariance). Thirdly,
we strive for our quality evaluation to be inacces-
sible to ground truth summaries, which are often
unavailable in real-world scenarios. Our designed
three components fulfill these three requirements.

Additionally, our coverage and faithfulness eval-
uations do not rely on ground truth summaries,
whereas the coverage and faithfulness evaluations
in Huang et al. (2023) do.

A.2.2 Comparison between POS and NER
model

To extract key information from the dialogues, the
intuitive choice is the Named Entity Recognition
(NER) model, while we find that most of the ex-
tracted entities from ’ner-english-ontonotes’ are all
speaker names. In contrast, we find that nouns can
represent the key information of the dialogues in a
good way.

An example of comparing the use of an NER
model and a Part-of-Speech (POS) model to ex-
tract key information is shown below, where the
blue font indicates the annotated key information.



Table 5: SSDS results on TODSUM 2:90 and 10:90 settings with 50% ratio. From the table, we can see that the
pseudo oracle using 25% unlabeled data performs better than the pseudo oracle using 50% unlabeled data, and
even better than that using full (100%) unlabeled data. Due to the high level of noise in the pseudolabels of the
DIALOGSUM dataset in the small-sized labeled setting, the pseudo oracle compared to the initially fine-tuned
model shows only marginal improvement. Consequently, we choose to skip experiments on DIALOGSUM (1:50).

Select Ratio 1:50 or 2:90 5:50 or 10:90
ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F

SAMSUM
Initial fine-tuned N/A 43.90 18.49 35.02 0.4374 46.81 20.46 36.38 45.74
Full Unlabeled 100% 44.32 19.07 35.43 43.72 47.76 21.84 38.20 47.02
Pseudo Oracle 50% 45.58 19.79 35.95 44.00 48.40 21.73 38.16 47.57
Pseudo Oracle 25% 44.92 19.87 35.67 44.32 48.33 21.97 37.93 47.32

DIALOGSUM
Initial Fine-Tuned N/A 40.30 14.53 31.19 43.89 42.28 15.61 33.18 46.29
Full Unlabeled 100% 39.22 14.04 30.50 43.49 41.61 16.04 33.25 46.12
Pseudo Oracle 50% 40.37 14.54 31.44 44.69 42.44 16.37 33.80 46.87
Pseudo Oracle 25% 40.44 14.98 31.73 45.43 42.71 16.10 33.77 47.05

TODSUM
Initial Fine-Tuned N/A 76.60 59.51 67.87 70.02 79.75 64.69 72.77 74.28
Full Unlabeled 100% 77.02 59.86 68.09 70.57 80.00 64.99 73.08 74.30
Pseudo Oracle 50% 78.44 61.65 70.11 72.37 82.49 68.48 76.40 77.18
Pseudo Oracle 25% 79.09 63.19 71.94 73.96 83.43 70.10 77.43 78.48

1. Dialogue: "Tom: Happy B-day! Tom: <file gif>
Laura: oh , thank you , it’s so cute <3 <3 <3 Tom:
:D"
2. Ground truth summaries: Tom wishes Laura
happy brithday.
3. Predicted summaries:Laura thanked Tom for his
birthday.

The NER model extracted results are shown as
below:
1. Dialogue: {Tom: Person, Tom: Person, Laura:
Person}
2. Ground truth summaries: {Tom: Person, Laura:
Person}
3. Predicted summaries: {Tom: Person, Laura:
Person}

Here, we observe that the extracted entities are
all person names. Given that the dialogues often
contain many speaker names, which cannot effec-
tively differentiate between different dialogues, we
believe that using a NER model to extract key in-
formation may not be ideal.

The POS model extracted results are shown be-
low, where NNP represents Proper noun, singular,
and NN represents Noun, singular or mass.
1. Dialogue: {Tom: NNP, B-day: NN, Tom: NNP,
file: NN, Laura: NNP, Tom: NN, D: NN}
2. Ground truth summaries: {Tom: NNP, Laura:
NNP, B-day: NN}
3. Predicted summaries: {Tom: NNP, Laura: NNP,
B-day: NN}

In this case, we find that the POS results for the
dialogue have a large overlap with the key informa-
tion from a human perspective (the blue fonts in
the original dialogue). Thus, the nouns in the dia-

logue are a better representation of key information
compared to the NER model.

A.2.3 Multi-label BNN

λcov/fai =

p/h∑
l=1

H[Yl|x,D]︸ ︷︷ ︸
Predictive

=

p/h∑
l=1

I[Yl|x,D]︸ ︷︷ ︸
Epistemic

+

p/h∑
l=1

E[H[Yl|x,D]]︸ ︷︷ ︸
Aleatoric

(10)

In BNN theory (Gawlikowski et al., 2023), pre-
dictive uncertainty usually consists of aleatoric un-
certainty and epistemic uncertainty.

The aleatoric uncertainty is irreducible because
it refers to the noise in data generation, such as
imperfect sensors. And the epistemic uncertainty
refers to a model uncertainty due to limited knowl-
edge, such as having insufficient training data. The
predictive BNN is the sum of these two items.

To get the three kinds of uncertainty, we usually
firstly calculate the predictive uncertainty as the
mean Ȳl of Yl ∈ Rk×2 for l-th label, followed by
calculating the entropy of Ȳl. Finally, the sum of all
labels’ entropy is the predictive uncertainty score
in terms of coverage λcov and faithfulness score
λfai. To obtain aleatoric uncertainty, we calculate
the entropy of each Yl at first, before calculating the
expectation of all k entropy values; finally, the sum
of all expectations of l labels’ entropy expectation
is the aleatoric uncertainty score. As for epistemic
uncertainty, it is usually obtained by using a pre-



dictive uncertainty score to subtract its epistemic
uncertainty.

A.2.4 Special Case on Faithfulness
To benefit the understanding of faithfulness, we
omit a special case for faithfulness in Sec. 4.4,
where a dialogue sentence has no nouns. Con-
cretely, when i-th dialogue sentence in a dialogue
has no nouns, the i-th element in ṽb ∈ Rh =
min(Ṽ b) will equal 0, because wb

i = 0 in Eq. 4.
We do not expect this to happen for a dialogue
sentence without nouns, as a smaller value in ṽb

refers to better faithfulness. Therefore, we add an
activation Awb on ṽb, followed by concatenating k
activated results of Awb(ṽb) to obtain Ṽ b. Awb(ṽb)
is formulated as below,

Awb
i
(ṽbi ) =

{
ṽbi , wb

i ≥ 0

γ, wb
i = 0

(11)

where it keeps the original ṽbi if the respective i-th
sentence in a dialogue has at least one noun, or else
gives a large scalar γ.

A.3 More Experimental Results

A.3.1 More Explanation About SSDS
Improved Ratio

If a method’s improved ratio is greater than 100%,
it indicates superior performance compared to the
pseudo oracle. Conversely, if a method’s improved
ratio is smaller than 0, it suggests worse perfor-
mance than the initial dialogue summarization that
is fine-tuned only on the labeled samples. A higher
improved ratio for a method signifies its superiority
over another method.

A.3.2 Uncertainty Estimation Results
For the aleatoric uncertainty is more important
in uncertainty estimation than epistemic uncer-
tainty. In the uncertainty estimation task, based on
Table 10 and 11, we see that aleatoric performs
better than epistemic in both SiCF (BNN) and SiCF
(m+BNN). This indicates that the aleatoric uncer-
tainty (such as noise in the sample collection im-
pacts more than the epistemic uncertainty (such as
insufficient training samples). It further shows that
pseudolabel noise impacts more compared with
the unlabeled sample size in SSDS on the SAM-
SUM 1:50 setting. Also, in SiCF (BNN), using
both aleatoric and epistemic (our default usage)
improves the uncertainty estimation. In contrast,
in SiCF (m+BNN), only using both aleatoric (our

default usage) improves the uncertainty estimation.
The possible reason is that the mean information is
more complementary to aleatoric compared with
epistemic. However, in our experiments, we still
use the predictive uncertainty, a sum of aleatoric
and epistemic uncertainty, which is a commonly
usage of the two kinds of uncertainty.

Besides the listed mean values of 0-50% and
0-90% in the Table 16 and 2, we also draw the
concrete metric values in different force true ratios
in Figure 4, 5, 6, 7, 8, 9.

A.3.3 SSDS Results
BNN, and m+BNN performs better than mean
in SSDS. Based on Table 12, we found among the
12 comparisons, two groups show mean performs
better, five groups show that BNN performs better,
and five groups show that m+BNN performs better.
This demonstrates the positive effect of BNN and a
combination of the mean and BNN on SSDS.

Epistemic uncertainty benefits SSDS perfor-
mance than aleatoric uncertainty. From Table 17,
we see that using both aleatoric and epistemic un-
certainty generally leads to better SSDS results.
For example, Considering Tables 10 and 11, we
conclude that though aleatoric uncertainty benefits
in improving uncertainty estimation results, using
both aleatoric and epistemic uncertainty benefits in
improving SSDS results.

A.3.4 Robust Experimental Settings
To assess the robustness of our experiments, we
conducted our experiments four times, in addition
to the original single run. Each of these four runs
used different random seeds, but they all shared the
same initial fine-tuned model and used the same set
of beam search sampling to generate summaries.
This approach allows us to evaluate the consistency
of our SiCF scores in a semi-supervised setting,
where the initial fine-tuned model is not our focus
and should be consistent for fairness. Furthermore,
these repeated experiments employed the same set
of beam search sampling generated summaries for
a fair assessment of robustness. For example, in
the SAMSUM 1:50 setting, all four experiments
were provided with the same set of 20 generated
summaries for each unlabeled dialogue. The results
of these robustness experiments are presented in
Tables 4, 19, 13, 14, and 15. Obtaining Table 15
with an additional 3 rounds of experiments for all
7 methods requires approximately 252 hours (10.5
days) on a server equipped with 4 V100 GPUs.
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Figure 4: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on SAMSUM 1:50
setting.
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Figure 5: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on SAMSUM 5:50
setting.
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Figure 6: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on DIALOGSUM
1:50 setting.
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Figure 7: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on DIALOGSUM
5:50 setting.



Table 6: SSDS results on SAMSUM 1:50 setting and on TODSUM 2:90 setting. The values in the bracket are SSDS
improved ratios.

1:50 or 2:90
ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F

SAMSUM
Initial Fine-Tuned 43.90(0%) 18.49(0%) 35.02(0%) 43.74(0%)
Full Unlabeled 44.32(41%) 19.07(42%) 35.43(63%) 43.72(-3%)
Random Rank 44.98(105%) 19.32(60%) 35.65(96%) 44.39(112%)
SiCF (mean) 45.85(191%) 19.90(102%) 35.96(144%) 44.89(198%)
SiCF (BNN) 45.20(127%) 19.95(105%) 35.63(93%) 44.45(122%)
SiCF (m+BNN) 45.14(121%) 19.31(59%) 35.59(87%) 44.47(125%)
SiCF (m+BNN-s) 45.40(147%) 19.38(64%) 35.48(70%) 44.34(103%)
Pseudo Oracle 44.92(100%) 19.87(100%) 35.67(100%) 44.32(100%)

TODSUM
Initial Fine-Tuned 76.60(0%) 59.51(0%) 67.87(0%) 70.02(0%)
Full Unlabeled 77.02(16%) 59.86(9%) 68.09(5%) 70.57(13%)
Random Rank 76.91(12%) 59.43(-2%) 68.29(10%) 70.64(15%)
SiCF (mean) 77.94(53%) 61.01(40%) 69.64(43%) 71.72(43%)
SiCF (BNN) 76.64(1%) 59.66(4%) 68.71(20%) 70.53(12%)
SiCF (m+BNN) 77.01(16%) 59.92(11%) 69.01(28%) 70.91(22%)
SiCF (m+BNN-s) 76.45(-6%) 59.46(-1%) 68.77(22%) 70.64(15%)
Pseudo Oracle 79.09(100%) 63.19(100%) 71.94(100%) 73.96(100%)

Table 7: SSDS results on SAMSUM 5:50 setting and on TODSUM 10:90 setting. The values in the bracket are
SSDS improved ratios.

5:50 or 10:90
ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F

SAMSUM
Initial Fine-Tuned 46.81(0%) 20.46(0%) 36.38(0%) 45.74(0%)
Full Unlabeled 47.76(62%) 21.84(91%) 38.20(117%) 47.02(81%)
Random Rank 47.65(55%) 21.13(44%) 37.18(51%) 46.66(58%)
SiCF (mean) 47.90(71%) 21.39(61%) 37.57(76%) 46.51(48%)
SiCF (BNN) 47.77(63%) 22.07(106%) 37.67(83%) 46.35(38%)
SiCF (m+BNN) 48.14(87%) 22.05(105%) 37.63(80%) 46.61(55%)
SiCF (m+BNN-s) 47.83(67%) 21.40(62%) 37.24(55%) 46.55(51%)
Pseudo Oracle 48.33(100%) 21.97(100%) 37.93(100%) 47.32(100%)

TODSUM
Initial Fine-Tuned 79.75(0%) 64.69(0%) 72.77(0%) 74.28(0%)
Full Unlabeled 80.00(6%) 64.99(5%) 73.08(6%) 74.30(0%)
Random Rank 80.57(22%) 65.73(19%) 73.76(21%) 75.13(20%)
SiCF (mean) 81.08(36%) 66.70(37%) 74.48(36%) 75.75(34%)
SiCF (BNN) 82.01(61%) 67.90(59%) 75.95(68%) 76.74(58%)
SiCF (m+BNN) 80.93(32%) 66.32(30%) 74.58(38%) 75.78(35%)
SiCF (m+BNN-s) 81.22(39%) 67.14(45%) 75.16(51%) 76.15(44%)
Pseudo Oracle 83.43(100%) 70.10(100%) 77.43(100%) 78.48(100%)

Table 8: SSDS results on DIALOGSUM 5:50 settings. We do not report SSDS results on DIALOGSUM 1:50, as its
generated pseudolabels are too noisy for training and detailed in caption of Tab. 5.

Medium-size Labeled Data
ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F

DIALOGSUM
Initial Fine-Tuned 42.28(0%) 15.61(0%) 33.18(0%) 46.29(0%)
Full Unlabeled 41.61(-155%) 16.04(87%) 33.25(11%) 46.12(-22%)
Random Rank 42.32(9%) 16.38(157%) 33.70(88%) 46.07(-28%)
SiCF (mean) 41.77(-118%) 15.87(53%) 32.79(-66%) 45.48(-106%)
SiCF (BNN) 42.00(-65%) 15.95(69%) 33.47(49%) 46.70(53%)
SiCF (m+BNN) 42.85(132%) 16.86(255%) 34.06(149%) 46.45(21%)
SiCF (m+BNN-s) 43.02(172%) 17.22(328%) 34.32(193%) 47.02(96%)
Pseudo Oracle 42.71(100%) 16.10(100%) 33.77(100%) 47.05(100%)

A.3.5 Parameter Analysis & Search
We conduct a parameter analysis on TODSUM
2:90 with SiCF (m+BNN), where its SSDS result
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Figure 8: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on TODSUM 2:90
setting.
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Figure 9: Diagram of uncertainty estimation results in force true ratio of 0%, 10%, 20% ..., 90% on TODSUM
10:90 setting.

Original 
Dialogue

Chosen
Generated Summary

Only 
Semantic invariance

Score

Only 
Coverage

Score

Only 
Faithfulness

Score

Sis: come downstairs . 
Keira: whyyyyyy . 
Sis: ima tell you something . 
Keira: argh . . coming

Ground Truth
Summary

Keira is going downstairs 
because Sis wants to tell 
her something .

Sis will come downstairs to 
Keira to tell her something.

0.712 0.851 0.358

SiCF
Score

0.641

Daniel: hey . 
Danielle: hello . 
Daniel: how are you? . 
Danielle: okay . 
Daniel: let's go for a walk . 
Danielle: now? . 
Daniel: yeah why not? . 
Danielle: I wanted to take a bath 
              now . . . 
Daniel: take a quick shower and 
            go with me . 
Danielle: hmm . Danielle: ok . 
Daniel: great . 
Daniel: I will collect you in a few minutes

Daniel offers Danielle taking
a walk together . Danielle 
agrees  but wants to take 
a shower first .

Daniel will collect Danielle in 
a few minutes.

0.660 0.326 0.543 0.510

Figure 10: The quality analysis of our SiCF score as well as its ablation study. Regarding the semantic invariance
score, the k diverse generated summaries are not displayed for brevity. In the coverage score, key details (nouns)
are highlighted in blue. For assessing faithfulness, conflicts (first row) and missing information (second row) are
indicated in red. The analysis of the figure is in Sec. A.3.6. Please zoom in for better visualization.

Table 9: Human evaluation results on the TODSUM on
100 testing samples from the SSDS task in the medium-
size setting, assessed by 5 participants.

Method Human preference rate ↑
Full Unlabeled 21.20%
SiCF(mean) 23.40%
SiCF(BNN) 22.80%
SiCF(m+BNN) 32.60%

comparison on 25% ration is shown in Table 21,
and its uncertainty estimation results are presented
in Table 22.

For this section, we can conclude as below.

The Impact of Parameters on Uncertainty Es-
timation and SSDS. Based on Table 22, we ob-
serve that enlarging the coefficient of semantic in-
variance can improve uncertainty estimation results
by 0-50% on TODSUM 2:90. However, the 0-90%
mean performs better when the coefficients of the
three components are balanced.

Additionally, according to Table 21, the best
SSDS performance is achieved when the coeffi-
cients of the three components are balanced. This
suggests that each component in SiCF scores con-



Table 10: Comparison of aleatoric and epistemic of uncertainty estimation results on SAMSUM 1:50 in terms of
ROURE-1 and ROUGE-2.

ROUGE-1 ROUGE-2
0-50% mean 0-90% mean 0-50% mean 0-90% mean

SiCF(BNN, alea+epis) 59.84 71.03 40.34 56.66
SiCF(BNN, alea) 59.80 70.98 40.30 56.58
SiCF(BNN, epis) 59.70 70.85 40.21 56.53
SiCF(m+BNN, alea+epis) 59.91 71.10 40.41 56.77
SiCF(m+BNN, alea) 59.94 71.17 40.41 56.78
SiCF(m+BNN, epis) 59.83 70.99 40.35 56.67

Table 11: Comparison of aleatoric and epistemic of uncertainty estimation results on SAMSUM 1:50 in terms of
ROUGE-L and BERTScore-F.

ROUGE-L BERTScore-F
0-50% mean 0-90% mean 0-50% mean 0-90% mean

SiCF(BNN, alea+epis) 52.69 65.87 59.34 70.64
SiCF(BNN, alea) 52.68 65.83 59.35 70.64
SiCF(BNN, epis) 52.42 65.58 59.09 70.40
SiCF(m+BNN, alea+epis) 52.62 65.80 59.38 70.69
SiCF(m+BNN, alea) 52.68 65.89 59.45 70.78
SiCF(m+BNN, epis) 52.53 65.69 59.24 70.53

Table 12: Comparison of mean (m), BNN (B), and m+BNN (m+B) on SSDS results based on Table 3. “>” means
better.

SAMSUM DIALOGSUM TODSUM
1:50 5:50 1:50 5:50 2:90 10:90

50% B>m+B>m m+B>B>m B>m+B>m m+B>B>m m+B>m>B B>m+B>m
25% m>B>m+B B>m+B>m m+B>B>m m+B>B>m m>m+B>B B>m+B>m

Table 13: Mean and standard deviation of uncertainty
estimation results of SiCF score on TODSUM datasets
in terms of ROUGE-1 on the medium-size labeled data.
The results are reported based on four repetitive experi-
ments via different random seeds. The “0-50” and “0-90”
are the mean of ROUGE-1 with eliminated ratio range
0%-50% and 0%-90%. It is respective to the Table 16.

ROUGE-1 TODSUM (10:90)
0-50% 0-90%

Random Rank 84.963±0.027 88.980±0.042
SiCF(mean) 85.822±0.028 89.823±0.056
SiCF(BNN) 85.509±0.024 89.629±0.024
SiCF(m+BNN) 85.774±0.033 89.887±0.031
SiCF(m+BNN-s) 85.836±0.004 89.949±0.002
Pseudo Oracle 88.235±0.003 92.298±0.001

tributes to the quality measurement of pseudola-
bels.

The best-searched coefficient on the uncer-
tainty estimation. We listed the best-searched
coefficient in Table 18 by searching the coefficient
leading to the best ROUGE-1 on the uncertainty
estimation task. The search range is [0, 0.25, 0.5,
0.75, 1] for each of the three component coeffi-
cients. Based on the table, there is no 0 coefficient
appears. This also indicates that each component
benefits the uncertainty estimations in all six set-

Table 14: Mean and standard deviation of uncertainty
estimation results of SiCF score on TODSUM datasets
in terms of BERTScore-F on the medium-size labeled
data. The results are reported based on four repetitive
experiments via different random seeds. The “0-50” and
“0-90” are the mean of BERTScore-F with eliminated
ratio range 0%-50% and 0%-90%. It is respective to the
Table 2.

BERTScore-F TODSUM (10:90)
0-50% 0-90%

Random Rank 81.02±0.017 86.086±0.032
SiCF(mean) 81.935±0.067 87.016±0.089
SiCF(BNN) 82.035±0.026 87.221±0.028
SiCF(m+BNN) 82.198±0.019 87.355±0.014
SiCF(m+BNN-s) 82.273±0.002 87.433±0.002
Pseudo Oracle 84.977±0.002 90.163±0.002

tings.

A.3.6 Quality Analysis of SSDS Results
Figure 10 presents the quality analysis of SSDS
results. Specifically, we observe that the chosen
generated summaries in the first row have higher
coverage, including terms like “downstairs” and
“something.” However, they differ from the original
dialogue in terms of who comes downstairs, result-
ing in a high coverage score but a low faithfulness
score.



Table 15: Mean and standard deviation of SSDS results on TODSUM medium-size labeled data. The results are
reported based on four repetitive experiments via different random seeds. It is respective to Table 3.

Medium-Size Labeled Data
ROUGE-1 ROUGE-2 BERTScore-F

TODSUM
Full Unlabeled 80.19±0.33 65.34±0.63 74.57±0.41
Random Rank 80.66±0.14 66.06±0.39 75.19±0.2
SiCF(mean) 81.49±0.26 67.13±0.33 76.06±0.22
SiCF(BNN) 82.28±0.18 68.40±0.32 77.04±0.19
SiCF(m+BNN) 81.72±0.47 67.47±0.67 76.50±0.44
SiCF(m+BNN-s) 81.29±0.11 67.01±0.17 76.05±0.11
Pseudo Oracle 83.75±0.25 70.52±0.32 78.72±0.19

Table 16: Uncertainty estimation results of SiCF score on three datasets in terms of ROUGE-1. The “0-50” and
“0-90” are the mean of ROUGE-1 scores with eliminated ratio range 0%-50% and 0%-90%. In the medium-size
setting, the TODSUM has a mean and standard deviation as shown in Table 13.

ROUGE-1 SAMSUM(1:50) DIALOGSUM(1:50) TODSUM (2:90) SAMSUM(5:50) DIALOGSUM(5:50) TODSUM(10:90)
0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90% 0-50% 0-90%

Random Rank 58.55 69.62 56.34 67.97 82.28 87.04 60.40 70.97 58.05 69.18 84.98 88.99
SiCF(mean) 59.61 70.83 57.02 68.65 83.24 88.00 61.50 72.24 58.63 69.85 85.87 89.92
SiCF(BNN) 59.84 71.03 57.01 68.68 82.67 87.54 61.71 72.44 58.61 69.86 85.55 89.67
SiCF(m+BNN) 59.91 71.10 57.03 68.67 83.08 87.92 61.74 72.45 58.64 69.88 85.83 89.94
SiCF(m+BNN-s) 59.98 71.20 57.06 68.75 83.19 87.99 61.86 72.61 58.70 69.96 85.84 89.95
Pseudo Oracle 61.63 72.98 58.41 70.35 85.49 90.32 63.56 74.41 60.22 71.66 88.23 92.30

Table 17: Comparison of aleatoric and epistemic of SSDS results on SAMSUM 1:50

Select Ratio ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F
SiCF(BNN, alea+epis) 0.25 45.20 19.95 35.63 44.45
SiCF(BNN, alea) 0.25 44.49 18.93 34.77 43.51
SiCF(BNN, epis) 0.25 45.35 19.69 35.77 44.39
SiCF(m+BNN, alea+epis) 0.25 45.14 19.31 35.59 44.47
SiCF(m+BNN, alea) 0.25 45.06 19.02 35.19 44.16
SiCF(m+BNN, epis) 0.25 45.07 19.35 35.49 44.19

Table 18: The coefficient of hyperparameter search in terms of ROUGE-1. We use “sein” to represent semantic
invariance, apply “cov” to represent coverage and utilize “fai” to denote faithfulness.

SAMSUM DIALOGSUM TODSUM
1:50 5:50 1:50 5:50 2:90 10:90

SeIn 0.5 0.5 1 1 0.75 0.75
Cov 0.75 1 1 0.5 0.25 0.5
Fai 0.25 0.25 0.25 0.25 0.5 0.5

In contrast, the generated summaries in the
second row lack terms like “walk,” “bath,” and
“shower,” leading to a low coverage score. Al-
though they do not have a conflict similar to the first
row, they miss the shower-related content, resulting
in relatively low faithfulness scores.

A.3.7 Human Evaluation Results

We had 5 participants for the human evaluation
test. We presented each person with the same
100 testing samples, including the original dia-
logues, ground truth dialogue summaries, and four
randomly-ordered generated dialogue summaries
from four methods (Full Unlabeled, SiCF (mean),
SiCF (BNN), SiCF (mean+BNN)). Subsequently,
each person was asked the question “Among the

four generated dialogue summaries, which is the
best when compared to the original dialogues and
ground truth dialogue summaries?”

From Table 9, we can see that SiCF (mean +
BNN) performs the best from the human perspec-
tive with a 32.60% human preference rate. The
human preference rate is the ratio between the total
respective selected samples and the total 500 times
selection.

A.3.8 More Experimental Settings

Our experiments run on 4 V100 GPUs, with 12
hours on SAMSUM for the full training.



A.4 License Analysis
The SAMSUM dataset is licensed under CC BY-
NC-ND 4.0. The DIALOGSUM dataset is licensed
under the MIT License. As for TODSUM, it is pub-
licly released without a specified license. There-
fore, our research usage of these datasets complies
with their respective licenses.



Table 19: Ablation study of three components in SAMSUM 1:50 in terms of ROUGE-1. We use “sein” to represent
semantic invariance, apply “cov” to represent coverage and utilize “fai” to denote faithfulness. We use ± to connect
the mean and standard deviation among 4 times repetitive experiments with different random seeds. A standard
deviation of 0.000 means that differences occur in the decimal places further to the right.

ROUGE-1 SiCF (Mean) SiCF (BNN) SiCF (m+BNN)
0-50% mean 0-90% mean 0-50% mean 0-90% mean 0-50% mean 0-90% mean

sein+cov+fai 59.941±0.191 71.139±0.177 59.812±0.016 70.996±0.021 59.932±0.015 71.151±0.031
only sein 59.533±0.011 70.675±0.010 59.533±0.011 70.675±0.010 59.533±0.011 70.675±0.010
only cov 59.964±0.006 71.183±0.005 59.676±0.005 70.812±0.005 59.811±0.010 71.022±0.005
only fai 58.657±0.026 69.794±0.037 59.553±0.006 70.671±0.005 59.104±0.004 70.037±0.004

Table 20: Ablation study of three components in SAMSUM 1:50 in terms of BERTScore F. The organization is
similar to Table 19.

BERTScore-F SiCF (Mean) SiCF (BNN) SiCF (m+BNN)
0-50% mean 0-90% mean 0-50% mean 0-90% mean 0-50% mean 0-90% mean

sein+cov+fai 58.90 70.28 59.34 70.64 59.38 70.69
only sein 58.83 70.14 58.83 70.14 58.83 70.14
only cov 59.21 70.56 59.26 70.52 5932 70.63
only fai 58.01 69.32 59.06 70.31 58.61 69.69

Table 21: Parameter analysis of SSDS results on TODSUM 2:90, where the SiCF scores are all calculated by
m+BNN. The values in the brackets are α, β, and γ, respectively.

Select Ratio ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F
SiCF(1, 1, 1) 0.25 77.18 60.33 69.35 71.31
SiCF(10, 1, 1) 0.25 76.71 60.07 68.73 71.11
SiCF(0.1, 1, 1) 0.25 76.67 59.80 68.77 70.80
SiCF(1, 10, 1) 0.25 76.42 59.42 68.42 70.44
SiCF(1, 0.1, 1) 0.25 76.96 59.89 68.48 70.81
SiCF(1, 1, 10) 0.25 76.11 58.41 67.23 69.43
SiCF(1, 1, 0.1) 0.25 76.24 59.27 67.95 70.41

Table 22: Parameter analysis of uncertainty estimation results on TODSUM 2:90. The values in the brackets are α,
β, and γ, respectively.

ROUGE-1 ROUGE-2 ROUGE-L BERTScore-F
0-50% mean 0-90% mean 0-50% mean 0-90% mean 0-50% mean 0-90% mean 0-50% mean 0-90% mean

SiCF(1, 1, 1) 83.08 87.92 70.61 78.90 77.38 83.89 78.85 84.91
SiCF(10, 1, 1) 83.16 87.89 70.73 78.87 77.50 83.85 78.98 84.91
SiCF(0.1, 1, 1) 82.85 87.62 70.19 78.45 76.90 83.38 78.42 84.45
SiCF(1, 10, 1) 82.70 87.46 70.14 78.33 77.00 83.43 78.48 84.47
SiCF(1, 0.1, 1) 83.14 87.92 70.60 78.83 77.20 83.66 78.73 84.75
SiCF(1, 1, 10) 82.80 87.50 69.97 78.14 76.45 82.86 78.07 84.03
SiCF(1, 1, 0.1) 82.90 87.77 70.44 78.76 77.31 83.84 78.77 84.87
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