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a b s t r a c t 

This paper proposes a novel method named Multi-label Double-layer Learning (MDLL) for multi-label 

cross-modal retrieval task. MDLL includes two stages (layers): L2C (Label to Common) and C2L (Common 

to Label). In the L2C stage, considering that labels can provide semantic information, we take label infor- 

mation as an auxiliary modality and apply a covariance matrix to represent label similarity in multi-label 

situation. Thus we can maximize the correlation of different modalities and reduce their semantic gap 

in the L2C stage. In addition, we find that samples with the same semantic labels may have different 

contents from users’ view. According to this problem, in the C2L stage, labels are projected to a latent 

space learned from features of image and text. By this way, the label latent space are more related to 

the sample’s contents. Then, it is noticed that the samples have same labels but various contents can 

be decreased. In MDLL, iterative learning of the L2C and C2L stages will improve the discriminative abil- 

ity greatly and decline the discrepancy between the labels and the contents. To show the effectiveness 

of MDLL, some experiments are conducted on three multi-label cross-modal retrieval tasks (Pascal Voc 

2007, Nus-wide, and LabelMe), on which competitive results are obtained. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the high-speed development of Internet technology, mul-

imedia data has increased dramatically. Consequently, more and

ore researchers pay their attention on the task of cross-modal

etrieval [1–10] . The goal of cross-modal retrieval is to match the

eature of one modality with the feature of the other modality in a

earned semantic space [11] . To describe the cross-modal retrieval

onveniently, we can use an image-text cross-modal retrieval task

s an example. In the image-text cross-modal retrieval, given an

mage query, the text which can describe the image query should

e returned; or given a text query, the most related image should

e found. The challenging task is that the features of text and im-

ge can not be matched directly with each other because implica-

ion and numbers of the feature dimensions are both various from

odality to modality. 

To solve the challenge coming from the heterogeneous feature

paces, one popular solution is to learn a common subspace [2,11–

8] . It tries to project the heterogeneous features into the com-

on subspace so as to match the image and text features directly.
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orrelations of the image-text pairs are also preserved in subspace

earning process. As one of the subspace learning method, Canoni-

al Correlation Analysis (CCA) projects two features of the different

odalities to a shared latent space which maximizes the correla-

ions between them [11,19–21] . Besides, Partial Least Squares (PLS)

22–26] is also a classical method of subspace learning, aiming at

earning two respective latent spaces by maximizing the correla-

ions between latent spaces. 

Cross-modal retrieval can be divided into single-label and

ulti-label according to the number of labels. Single-label means

hat each sample belongs to only one semantic class. Previous

tate-of-art algorithms, such as LGCFL [2] , LCFS [5] , GMLDA and

MMFA [21] , are all based on single-label cross-modal retrieval.

owever, only one label is not suitable to depict all the objects in

he image. Further, in practice, it should allow users to get the re-

rieval results which are more similar to queries in terms of several

emantic classes rather than one. As its particular advantages, the

ulti-label cross-modal retrieval starts capturing researchers’ at-

ention recently. It can describe the samples precisely with the us-

ge of several descriptive labels, and permit users to utilize queries

o express their expectation more specifically. 

For the multi-label cross-modal retrieval task, this paper pro-

oses a novel approach named Multi-label Double-layer Learning

MDLL). Since labels can preserve the semantic information, MDLL

akes label as the auxiliary modality and uses a covariance matrix

o present the label similarity in multi-label situation. Then, the

https://doi.org/10.1016/j.neucom.2017.10.032
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Fig. 1. Illustrative examples show two images in Nus-wide database [27] . Though 

two images own the same multi-labels, they do not look similar from user’s per- 

spective. The image in red box gives the “airport” more weight than other labels, 

so as the image in blue box gives “beach”, “water” and “sand” than others. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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semantic gaps between text and image can be reduced with the

introduction of labels. Moreover, with the usage of the semantic

information in multi-label, MDLL can improve the performance of

cross-modal retrieval greatly. The process using the label informa-

tion to solve the common space is called as “from Label to Com-

mon”(L2C). 

In multi-label task, each sample is associated with several la-

bels with the equal weight. Compared with the single-label cross-

modal retrieval, the multi-label cross-modal retrieval brings larger

within-class similarity. Though some samples own the same labels,

they are quite different based on the contents from users’ perspec-

tive. For instance, second column of Fig. 1 shows two images with

the same labels. Their labels are given in the first column of Fig. 1 .

It can be easily found that two images are not related actually,

although they have the same labels. More concretely, the picture

in the red box should be set with the larger weight on “airport”

than the other five labels. As for the picture in the blue box, it is

more relevant to “beach”, “sand” and “water” than other three la-

bels. Further, the weight of “beach” is larger than “water”, and the

weight of “water” is larger than “sand”. Thus, we argue that there

are some biases in real semantics of the samples because all the

labels have the equal weight. 

To address the above problem, we consider that labels should

be more related to the contents of samples. Firstly, the features,

which are extracted from the original multimedia, show more ac-

curate contents of samples compared with the equal-weight labels.

Secondly, the contents of samples are reasonable to participate in

learning the weights of labels. According to above two points, we

learn labels’ weight information based on the image’s and text’s

features. Then, with the label latent space substituting the original

label space, the influence of above biases can be reduced to some

extent. Since each image-text pair should share the same weight

for its labels, we use their common space features to update label

latent space in our model. The process of solving the label latent

space using the common space of samples is called as “from Com-

mon to Label”(C2L). 

In MDLL, the L2C and C2L stages are conducted in turn. On one

hand, in the L2C stage, label information is utilized to solve the

common space of the image and text. Through the introduction of

label information, the learned common space will preserve the se-

mantic information. On the other hand, the contents of the com-

mon space are applied to learn the label latent space. Then the la-

bels have the different weights. With the iterative learning of two

stages (layers), the convergence can be found and the goals of two

stages can be achieved as possible as they can. In other words, we
chieve that the discriminative ability of the model is improved

reatly and the influence of the biases is reduced theoretically. 

The novelty and advantages of MDLL can be included as fol-

ows: 

(1) To solve the multi-label cross-modal retrieval, we propose

 novel approach which includes two learning layers: L2C and C2L.

y the iterative learning of two layers, the semantic gap is reduced

reatly and the discriminative ability improves a lot. To the best

f authors knowledge, the iterative learning of double-layer is the

rst proposed in cross-modal retrieval. 

(2) Since multi-label contains richer label information, an ex-

ended PLS takes labels as the auxiliary modality and introduces

he label information in the form of a covariance matrix of the

abel latent space. Thus, the relation between the heterogeneous

odalities is enhanced in the extended PLS via the covariance ma-

rix. 

(3) To reduce the influence coming from the biases between la-

els and samples’ contents, a novel model is designed through en-

ancing three models’ relation in the C2L stage. During this stage,

he contents of image and text determines the weight of labels. 

The remainder of this paper is organized as follows. In

ection 2 , we show the extensions of subspace learning method

nd the state-of-art models in cross-modal retrieval. In Section 3 ,

e give a simple review of PLS. Then, we show the proposed MDLL

pproach in Section 4 . In Section 5 , we show the experimental re-

ults of MDLL on three public databases. At last, some conclusions

re summarized in Section 6 . 

. Related work 

CCA, as one of the traditional subspace learning methods, has

any extensions used in the related area. Based on CCA [11] , Se-

antic Correlation Match (SCM) is proposed to get a semantic sub-

pace by using a logistic regressor. In [4] , Correlated Semantic Rep-

esentation (CSR) obtains a joint image-text representation and an

nified formulation by learning a compatible function based on a

tructural SVM. The 3-view CCA [28] , which represents the high-

evel semantics as a single category or multiple concepts, incor-

orates the semantics as the third view to solve the cross-modal

etrieval problem. 

Similar to CCA, PLS has been applied in the cross-modal re-

rieval problem widely. Sharma et al. [21] and Kang et al. [2] ap-

lies PLS to build the relations between the latent variables of im-

ge and text. Besides cross-modal retrieval, PLS has been applied

uccessfully on other related problems. For instance, in the task

f cross-pose face recognition, the relations between the coupled

aces are constructed by PLS [29] . Besides CCA and PLS, Bi-Linear

odel(BLM) is also proposed for cross modal face recognition. It is

lso applied into cross-modal retrieval in [21] . 

Similarly, there are also many extensions of PLS. In [30] , the

ridge PL S(BPL S) is proposed by adding ridge-parameter to im-

rove the efficiency of each iteration. Rosipal and Trejo [25] pro-

ose kernel PL S(KPL S) by mapping the input variables into a high

imension space so as to solve the nonlinear problem in a lin-

ar algorithm. Structured PLS not only learns a low-dimensional

nd discriminative feature subspace, but also effectively exploits

nherently the structural information of labeled image by training

ata with the structured label information which contained track-

ng and segmentation simultaneously [31] . 

In the cross-modal retrieval problem, semantic gaps always ex-

st in the heterogeneous modal spaces. By using label informa-

ion, semantic gaps can be decreased theoretically [11,32,33] . Spe-

ially, GMLDA and GMMFA, constructed to extract multi-view fea-

ures by a framework based on Generalized Multiview Analysis

GMA), shows the competitive performance on the cross-modal re-

rieval problem [21] . In [2] , label information is used to close the
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Fig. 2. (a) The structure diagram of PLS. (b) The structure diagram of MDLL. (For interpretation of the references to color in this figure, the reader is referred to the web 

version of this article.) 
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d  
ifferent modalities within the same class and enlarge the dis-

ances between the heterogeneous modalities. It gains the state-

f-art performance on the cross-modal retrieval problem. In [5] ,

earning Coupled Feature Space(LCFS) is proposed, in which � 21 -

orm is used to select the relevant and discriminative features

rom the coupled modalities, and trace the norm regularization

o enforce the relevances of projected data with potentially con-

ections. It is mentionable that the above proposed methods all

im at the single-label cross-modal retrieval. As for the multi-label

ross modal retrieval, Ranjan et al. [34] propose ml-CCA, which is

he state-of-art algorithm and utilizes the semantic information in

he form of multi-label information and establishes the correspon-

ences across the modalities. 

Besides, the databases which can be applied in the multi-label

ross-modal retrieval have been built. The popular and applicable

atabases suitable for the multi-label cross-modal retrieval include

ASCAL VOC2007 [35] , NUS-WIDE [27] and LabelMe [36] . 

. Preliminary 

.1. Multi-label cross-modal retrieval 

In this section, we introduce the multi-label cross-modal re-

rieval. The samples applied in multi-label cross-modal retrieval

ave single or several labels rather than only one label. The multi-

abel cross-modal retrieval conforms to actual users’ requirement

ore compared with the single-label. In the multi-label cross-

odal retrieval, similar to the single-label cross-modal retrieval,

he most related results are returned from one modality with a

uery from the other modality. To the best of our knowledge, pre-

ious researchers of the cross-modal retrieval only focus on the

ingle-label cross-modal retrieval except [34] , which for the first

ime proposes the multi-label cross-modal retrieval. 

In this paper, we use L = [ l 1 , . . . , l n ] 
T ∈ R 

n ×c to denote the

ulti-label indicator matrix, where all the elements in l i are ze-

os except for one or several respective semantic classes. 

.2. Partial least squares 

PLS can construct the relations between the heterogenous

odalities by maximizing the correlation between the latent vari-

bles. It has achieved the great successes in many areas [22,23,26] .

n Fig. 2 (a), we show the structure diagram of PLS. 

Let X = [ x 1 , . . . , x n ] 
T represent one multimedia modal original

eatures with n training samples, where x i is in the space R 

d 1 . La-

ent variable of X is represented by V = [ v 1 , . . . , v n ] T ∈ R 

n ×p where

 is far smaller than d . Similarly, let Z = [ z , . . . , z n ] 
T ∈ R 

n ×d 2 
1 1 
epresent the original features of the other multimedia modal-

ty in the training set. Its latent variable is represented by U =
 u 1 , . . . , u n ] 

T ∈ R 

n ×p , where p is also far smaller than d 2 . Finally,

LS can be built as: 

X = V W 

T + ε x 
Z = UQ 

T + ε z 
(1) 

here the matrices W and Q are the loading matrices, the matri-

es εx and εz are the residuals matrices. By means of the low di-

ension latent variables V and U , we can further get a regression

oefficient matrix B ∈ R 

d 1 ×d 2 and then project X into Z through B

s follow: 

B = X 

T U(V 

T X X 

T U) −1 V 

T Z 

Z = X B 

T + ε B 
(2) 

here εB is the residual matrix. One thing should be pointed out

s that the sample data X and Z are Z-score normalized. Thus, their

ample covariance matrix cov ( X, Z ) is as follow: 

ov (X, Z) = 

X 

T Z 

n − 1 

(3) 

According to Abdi [37] , PLS can be solved by a traditional itera-

ive algorithm calculating the first dominant eigenvector to get the

eight vectors r and s as follow: 

X 

T Z Z T X r = λ1 r 

Z T X X 

T Zs = λ2 s 
(4) 

here λ1 and λ2 are respective eigenvalues. 

Applying Eq. (3) in the form of X T Z = (n − 1) cov (X, Z)

nto Eq. (4) , it can be found that Z T X X T Zs = [(n − 1)

ov (X, Z)] T [(n − 1) cov (X, Z)] s = λ2 s, which means the weight

ectors r and s are corresponding to the first right singular vector

nd the first left singular vector of (n − 1) cov (X, Z) . However, in

he SVD, the coefficient of a matrix only affects the middle term

hich is a diagonal matrix and has no effect on the left singular

ectors and right singular vectors. Thus, the weight vectors r and

 can be derived from the SVD of cov ( X, Z ) as follow: 

ov (X, Z) T cov (X, Z) s = λ2 s (5)

After the i th iteration, we can obtain the i th latent vectors

 i = Xr i and u i = Zs i . Then we get the weight matrices R and S , fol-

owed by solving the latent variables V and U . Finally, the relation

etween X and Z is built by Eq. (2) which means X and Z are com-

arable. 

. The proposed MDLL model 

In this section, MDLL and its optimization are introduced in

etails. The structure diagram of MDLL is shown in Fig. 2 (b), in
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which the purple arrows are the L2C stage, the red arrows are the

C2L stage, and the blue arrows are the projection. 

4.1. From label to common (L2C) 

Compared with the heterogeneous features of the different

modalities, label information is more related to the semantic in-

formation. So, for the semantic gap between text and image in the

cross-model retrieval, we argue that label information are effec-

tive to build the relation between text and image. Thus, similar to

[28,38] , we regard labels as the auxiliary modality to reduce the

gap between the heterogeneous modalities. 

In the L2C stage, we learn a more discriminate common space

by designing a sample covariance matrix ψ xz which contains label

similarity as follows: 

ψ xz = 

1 

N 

n ∑ 

i =1 

n ∑ 

j=1 

ξ (l i , l j ) x i z 
T 
j (6)

where N = n × n and ξ describes the similarity between the label

vectors l i and l j : 

ξ (l i , l j ) = exp 

(−|| l i −l j || 2 2 ) /σ (7)

where σ is a constant factor. 

According to Eq. (5) , in the L2C stage, the sample covariance

matrix cov ( X, Z ) which is utilized in SVD to solve PLS is replaced

by ψ xz . Hence, similar to Eq. (5) , the object function of L2C stage

to solve weight vector s is as follow: 

ψ 

T 
xz ψ xz s = λ3 s (8)

s.t. s T s = 1 

where λ3 is eigenvalue. 

From above object function, we can conclude that during the

process solving modal common space by PLS, the L2C stage not

only achieves maximizing the correlation between the latent vari-

ables v ( v = Xr) and u ( u = Zs ), but also introduces the label infor-

mation. On the one side, maximizing the correlation between the

latent variables enables the features of the different modalities

more comparable after projection. On the other side, introducing

the label information can reduce the semantic gaps theoretically.

More meaningfully, the usage of the covariance matrix ψ xz has

avoided the question which label should be selected in using the

label information. 

To solve Eq. (8) , we use the SVD described in Section 3 by solv-

ing the weight vectors r and s which are respective the first right

singular vector and the first left singular vector of ψ xz . Because we

can solve both r i and s i at the i -th iteration, we just give the object

function solving weight vector s without the other one about r . 

4.2. From common to label (C2L) 

As introduced in Section 1 , the equal weight of the multi-labels

may lead to some biases in the retrieval results from users’ view. In

allusion to this problem, we argue that the labels should have the

weight divergence in terms of the contents. Thus, in the C2L stage,

the original labels are projected into a latent space. We learn the

label latent space with the help of the features of the image’s and

text’s common space. They are learned from their original features

which include more accurate contents compared with the equal

weight labels. With the extra information about the contents, the

label latent space is more accurate to describe the sample contents.

In other words, the weights for each label are no more equal in the

label latent space. By this way, the influence of the equal weight

can be remitted to certain extent. 

In the C2L stage, the operator P = [ p 1 , . . . , p c ] 
T ∈ R 

c×p projects

the labels into the label latent space. Thus, by closing the dis-

tance between the label latent space and the feature latent spaces,
e can enhance the relation between the features of the different

odalities and their labels. Furthermore, based on the Frobenius-

orm, the projection operator P can be learned as: 

rg max 
P 

β = −1 

2 

(|| X R − LP || 2 F + || ZS − LP || 2 F + μ|| P || 2 F ) (9)

here μ is a nonnegative regularization parameter. In the first two

erm of Eq. (9) , P is constrained by the common space of the image

nd text to achieve that the weights of labels are more related to

he sample contents and no more equal. The last term μ|| P || 2 
F 

is

he transformation constraint to prevent overfitting. 

To solve Eq. (9) , we fix R and S to update P . After setting dβ
dR 

to

, we can obtain: 

(2 L T L + μI) P = L T X R + L T ZS (10)

⇒ P = (2 L T L + μI) −1 (L T X R + L T ZS) 

.3. Solve MDLL by iteration 

In the C2L stage, the label latent space is updated under the

onstraint of the common space. Thus the label information ap-

lied in model is more relative to the contents of samples. How-

ver, the change of the label latent space in each iteration leads to

arious input of Eq. (8) . In the L2C stage, the updated label latent

pace makes the common space more discriminated for its extra

ontent information. Because of the various input of Eq. (8) , the

2C stage then outputs different modal common space in each it-

ration. With the change of the common space, the input of the

2L is altering. And above is what has changed in each iteration. 

The concrete procedures of MDLL can be found in Alg. 1. We

chieve the iterative learning of two modalities and labels with

wo objective functions Eq. (8) and Eq. (9) . Specially, in the L2C

tage, the labels L can be updated by 

 

′ = LP (11)

ollowed by Eq. (7) updated and then the R and S is also updated.

n the C2L stage, we solved the label projection operator P via

q. (10) . 

Finally, we achieve the semantic gap declined conspicuously

nd the influence caused by the equal-weight of the labels dropped

o certain extent with the iterative learning of the modal common

pace and the label latent space. 

.4. Analysis of computational complexity 

Lastly, we briefly analyze the computational complexity of

DLL. 

In the L2C stage, MDLL solves the modal latent space. The la-

ent variables are p dimensions. And each dimension is solved by

he SVD calculating the first right singular vector and the first left

ingular vector. Set n as the number of sample pairs in the train-

ng set, as a result of d 1 dimensions for image features and d 2 di-

ensions for it is text features. And we assume d 1 > d 2 , then the

omputational complexity of the L2C stage is O (pd 1 d 
2 
2 
) . 

In the C2L stage, MDLL solves label projection operator. In this

art, the time complexity of the first term in Eq. (10) is O ( c 3 ), and

he time complexity of the second term in Eq. (10) is O (cnp(d 1 +
 2 )) . Thus the time complexity of the C2L stage is O (c 3 + cnp(d 1 +
 2 )) . 

Finally, as a result of combining the L2C and C2L stages in iter-

tions where the max iteration is set as m , the time complexity of

DLL is O (m (pd 1 d 
2 
2 

+ (c 3 + cnp(d 1 + d 2 )))) . 

. Experiments 

In this section, we test MDLL on three popular databases to

how its performance on multi-label cross-modal retrieval task. 
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Algorithm 1 The algorithm of MDLL approach. 

Input: 

the different feature modality X and Z , the class indicator ma- 

trix L , the dimension p of latent space, the coefficient μ of reg- 

ularization term 

Output: 

Converged P , R , S 

1: Initialize P using identify matrix; 

2: Store X and Y as E = X , F = Z; 

3: repeat 

4: Update L with Eq. (11); 

5: Update ψ xz with Eq. (6); 

6: for i = 1 to p do 

7: Calculate the first right singular vector and the first left 

singular vector of ψ xz to obtain the i th weight vector r i and 

s i correspondingly; 

8: Calculate the i th latent vector: 

v i = Xr i , u i = Zs i ; 

9: Deflate X , Z matrices as follow: 

X = X − v i v T i X , Z = Z − u i u 
T 
i 

Z; 

10: end for 

11: Update X = E and Z = F 

12: Calculate the P with Eq. (10) 

13: until Convergence criterion satisfied 

14: return P , R and S; 
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Table 1 

MAP results on the VOC database. 

Methods/Tasks txt2im im2txt Average 

CCA [26] 0.3073 0.2945 0.3009 

LCFS [5] 0.4278 0.3355 0.3816 

LGCFL [2] 0.4362 0.3440 0.3901 

ml-CCA [34] 0.4280 0.3584 0.3932 

MDLL 0.4604 0.3745 0.4174 

Table 2 

MAP results on the NUS-WIDE database. 

Methods/Tasks txt2im im2txt Average 

CCA [26] 0.2869 0.2667 0.2768 

LCFS [5] 0.4742 0.3363 0.4053 

LGCFL [2] 0.4972 0.3907 0.4 4 40 

ml-CCA [34] 0.4689 0.3908 0.4299 

MDLL 0.4874 0.4037 0.4455 
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.1. Experimental databases 

Nus-wide [27] is crawled from Flicker website including 269,648

mage-tag pairs. There are 81 semantic concepts for this database,

hich can be regarded as the class labels in our experiment. Each

mage is annotated with one or several labels of 81 semantic con-

epts. The class labels which correspond top-10 largest numbers

f image are picked out for our experiment. As a result out of

he top-10 largest numbers of image, we choose 67,993 image-

ag pairs. Then, we randomly select 40,834 image-text pairs for

he training set and 27,159 image-text pairs for the testing set. For

eature representations, we use the 500-dimensional bag-of-words

ectors based on the SIFT descriptors as the image features and the

0 0 0-dimensional word frequency vectors based on tag features as

he text features. 

Pascal VOC 2007 [35] consists of 5011/4952 (training/testing)

mage-tag pairs with 20 semantic classes. For the feature repre-

entation, we use the 512-dimensional GIST features for image, and

he 399-dimensional absolute tag rank features for text. For the la-

el representation, we use its semantic classes. We use the original

rain-test split provided in the database for training and testing. 

LabelMe includes 3825 image collected by Hwang and Grau-

an [36] . We use the publicly available GIST features provided by

wang and Grauman [36] for image representation. For it is text

epresentation, we use the 209 dimensional absolute tag rank fea-

ures provided by Hwang and Grauman [36] . For label representa-

ion, we use the groundtruth annotation of the image. We perform

 random 50 to 50 split of the database for creating the training

nd testing sets. 

.2. Compared scheme 

To validate the performance of MDLL in multi-label cross-modal

etrieval, we compare it with one baseline and several related

tate-of-art approaches. CCA is a traditional subspace learning ap-

roach which projects heterogeneous modal features into a shared

atent space by maximizing the correlation between two modali-

ies. We use CCA as a baseline algorithm. LCFS unifies linear pro-
ection operators, � 21 norm and trace norm to learn a subspace

nd select coupled features simultaneously. LGCFL is a supervised

ethod regarding the multimedia modalities as assemblies of lo-

al parts to learn the most discriminant groups. ml-CCA uses the

emantic information to establish the correspondences in the form

f multi-label information. 

.3. Evaluation metric 

In our experiment, we use MAP (Mean Average Precision) and

R (Precision-Recall) curve to show the effectiveness of MDLL. 

MAP has been widely used to evaluate the overall performance

f cross-modal retrieval, such as [2,6,11,34,39] . To compute MAP,

e first evaluate the average precision (AP) of a retrieved database

ncluding N retrieved samples by AP = 

1 
T 

∑ N 
r=1 E(r) δ(r) , where T is

he number of the relevant samples in the retrieved database, E ( r )

enotes the precision of the top r retrieved samples, and δ( r ) is

et to 1 if the r th retrieved sample is relevant (on above three

atabases, a retrieved sample is relevant if it shares at least one

abel with the query) and δ( r ) is 0 otherwise. Then by averaging

he AP values over all the queries, MAP can be calculated. 

Besides, PR curve is a classical measure of information retrieval

r classified performance. Assume that the set S 1 includes the sam-

les in which real labels are denoted by L r . The classifier picks out

he set S 2 samples in which labels are classified into L r . In the set

 2 , the samples in which real labels are L r construct the set S 3 .

hus, we can calculate the precision ratio: P R = 

| S 3 | | S 2 | and the re-

all ratio: RR = 

| S 3 | | S 1 | , where | A | means the number of elements in

et A . Furthermore, we get different PR - RR values via the different

lassified setting and then draw precision-recall curve in which the

ertical coordinate is precision ratio and the horizontal coordinate

s recall ratio. 

.4. Experimental results 

The MAP values of all the algorithms on the Pascal Voc2007,

US-WIDE and LableMe databases are presented in Tables 1 , 2 and

 , respectively. The results significantly better than others are indi-

ated in boldface. 

.4.1. Results on Pascal VOC 2007 

From Table 1 , we have the following observations: firstly, MDLL

chieves better performances than other compared algorithms in

erms of MAP. It is mentionable that the other algorithms all just
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Table 3 

MAP results on the LabelMe database. 

Methods/Tasks txt2im im2txt Average 

CCA [26] 0.5656 0.5753 0.5704 

LCFS [5] 0.7898 0.8067 0.7982 

LGCFL [2] 0.8390 0.7961 0.8176 

ml-CCA [34] 0.8175 0.8081 0.8128 

MDLL 0.8601 0.8559 0.8580 
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use the single stage but MDLL owns two stages. It indicates the

dominance of the iterative learning of the L2C and C2L stages. 

Secondly, LCSF, LGCFL, ml-CCA and MDLL outperform at least

27.12% higher average MAP than CCA. Considering that these meth-

ods take label information into the model while CCA only use the

multimedia modal features, it is believable to conclude that the

label information can provide valuable information in multi-label

cross-modal retrieval. 

Third, MDLL achieves 9.38% higher average MAP than LCSF. LCSF

uses the original label space to solve the multimedia modal com-

mon space. Different from LCSF, MDLL makes use of label in com-

putation of the common space. It illustrates effectiveness of the

introduction of the labels’ latent space. 

Moreover, MDLL outperforms 7% higher average MAP than

LGCFL. Similarly, LGCFL also uses the original label space to solve

the projection operators. It indicates the benefit of labels’ latent

space in our approach again. In addition, LGCFL does not take

the similarity between labels into account while MDLL dose. Thus,

it is valid to consider the similarity between labels in the L2C

stage. 

At last, compared with ml-CCA which also uses the similarity

between the corresponding multi-label vectors to show the rela-

tion between the heterogeneous modal data, MDLL obtains 6.15%

higher average MAP. It demonstrates the necessity and advantage

of using the latent space of the labels. By learning the labels’ la-

tent space combined with multimedia modal features, we enhance

the relation between three modalities in the C2L stage. Thus they

can avoid the over fitting because the variation from practical con-

tents to tagged label, which achieves more discriminative ability in

matching the semantic-similar heterogeneous pairs. 

In Fig. 3 , MDLL also has the best performance on both image-

to-text and text-to-image tasks in Pascal Voc 2007. From the PR

curves, it is obvious that under the same recall rate, MDLL gets
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(a) VOC: PR curves for text query
Fig. 3. PR curves on th
he highest precision in all compared algorithms. That also shows

uperiority of MDLL. 

.4.2. Results on NUS-WIDE 

According to the Table 2 , we get the conclusion as follow: 

To begin with, MDLL also outperforms the compared state-of-

he-art algorithms in terms of the average MAP. Compared with

he second best algorithm LGCFL, MDLL gets the average MAP 1.13%

ncreased. Though the improvement is only 1.13%, it still shows the

ompetitive result of MDLL on multi-label cross-modal retrieval. 

Besides, we can also find that the MAP of image-to-text of

DLL is the highest result among the five algorithms. This may

e the effect of the C2L which learns more accurate contents from

he model features rather than the conventional labels. Thus, the

ommon space is more consistent compared with others learned

y other algorithms. 

Nevertheless, different from the results based on the Pascal VOC

atabase, LGCFL outperforms 2.1% higher text-to-image MAP than

DLL. The possible reason for that result is that the image in

GCFL are employed as regularization in the form of assemblies of

ocal parts set, which means the image information is applied in a

ore effective way. 

In Fig. 4 , it is clear that MDLL achieves the best performance on

he text-to-image query task. As for the image-to-text query task,

DLL ranks the second in some case. 

.4.3. Results on LabelMe 

In Table 3 , MDLL reaches the best overall performance in aver-

ge MAP again, from which, we can conclude as follow: 

Firstly, it exceeds existing state-of-art algorithms with MAP

1.76% for LGCFL and 81.28% for ml-CCA. The improvement of

DLL in average MAP is at least 4.94% on this database. It vali-

ates the effectiveness of MDLL one more time. 

Secondly, the performance of supervised algorithms is still far

igher than unsupervised algorithm(CCA). This shows the impor-

ance of labels in cross-modal retrieval again. 

Thirdly, it is obvious that the results on this database are gener-

lly high. We attribute these supernal figures to its less classes. To

e more specific, the LabelMe collected by Hwang and Grauman

36] includes only 5 categories(person, car, screen, keyboard, and

ug). This leads to more distinguish labels than other databases.

hen, the retrieval difficulty plunges. 

In Fig. 5 , the PR curves are also displayed. It shows that MDLL

anks top on the text-to-image task. As for image-to-text task, it is
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Recall

P
re

ci
si

on

text−PR curve

CCA
LCFS
LGCFL
ml−CCA
MDLL

(b) VOC: PR curves for image query
e VOC database. 
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Fig. 4. PR curves on the NUS database. 
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Fig. 5. PR curves on the LabelMe database. 
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Table 4 

Calculational time on the VOC database. 

Tasks 

Methods Training time Testing time 

CCA 52.82 10.69 

LCFS 166.53 10.76 

LGCFL 36.62 10.52 

ml-CCA 245 10.82 

MDLL 2339.10 10.87 

5

 

t  

o  

t  

T

 

t  

B  
entionable that the PR curve of our method is much better than

ny other methods at middle and high levels of recall, which is

ore practicable in high-performance required retrieval. 

.5. Parameter sensitivity 

In MDLL, we need to tune several parameters. In our experi-

ents, we set constant factor σ to 100 for three databases. To val-

date how the rest parameters affect the performance, we repeat

he experiments to evaluate the parameter sensitivity on the PAS-

AL VOC2007 database. 

Fig. 6 shows the MAP values in the process tuning parameters

. p is the number of the latent space dimension of multimedia

odalities. From that, we find that MAP is stable when p is big-

er than 100, which indicates that the dimension number of latent

pace should be large enough. After considering the time complex-

ty of algorithm, we set p to 100 for PASCAL VOC 2007. Besides, we

lso set p = 200 and p = 100 for Nus-wide and Labelme respec-

ively. Furthermore, we set regularization parameter μ = 0 . 1 for

ascal Voc 2007, μ = 1 for both Nus-wide and LabelMe databases

nd max iteration m = 20 for the all databases. 
.6. Comparison on computation time 

In addition, we also carry on the comparison on computation

ime. All algorithms run on the Pascal Voc 2007 database based

n the setting proposed in Section 5.1 and Section 5.5 . Moreover,

he computational time includes training time and testing time as

able 4 , in which the unit is second. 

It is noticed that our model is much more time-consuming

han the state-of-the-art algorithms in the terms of training time.

ecause our model has two layers and each layer calculates
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Fig. 6. Sensitivity analysis of dimension of the latent space on PASCAL VOC2007. 

Fig. 7. Two examples of queries and their results retrieved by MDLL on the Pascal VOC2007 database. 
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iteratively. The enormous iteration leads to the obviously higher

training time. As for the testing time, it is obvious that each algo-

rithm has similar testing time. Since they all project the original

modal features into common space by respective projection opera-

tors in the test processes. Nevertheless, the training is done offline

and only once. Thus the training time cost is not as important as

the testing time. In the future, we will improve the efficiency of

the proposed work. 

5.7. Exhibition of retrieval result 

Besides above experiments, we also show instances of queries

and their results retrieved by MDLL and other comparing algo-

rithms on the Pascal Voc 2007 database in Fig. 7 . In the left sub-

figure, a text query and its respective images of ground truth are
hown in the first column. The top five retrieved images of MDLL

nd other comparing algorithms are exhibited from the second col-

mn to the six column. Red frames are wrong retrieval results

ased on their respective labels. From the left subfigure, we can

now that all the retrieved images of MDLL are correct while at

east one result is wrong in all other algorithms. In the right sub-

gure, similarly, we also show the image query retrieval results in-

luding its respective text of ground truth, the top five retrieved

ocuments represented by their corresponding image for all algo-

ithms. From that, we also can find that at least one retrieval result

s wrong for other algorithms. 

To sum up, through the above MAP tables, PR curves, and exhi-

ition of retrieval results, MDLL gets competitive results on multi-

abel cross-modal retrieval because of the iterative learning of the

2C and C2L stages. 
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. Conclusion 

This paper proposes a novel method for the multi-label cross-

odal retrieval task. In our approach, we utilize iterative update of

wo stages: L2C and C2L. The L2C stage maximizes the correlation

f two multimedia modal latent variables with the information of

abel in the common space, and the C2L stage reinforces the rela-

ion between three modalities through learning labels’ latent space

ased on modal features showing samples’ contents. The exper-

ments are carried out on three public databases, validating that

DLL outperforms the state-of-the-art methods. 

Later, we will look for more practical methods to evaluate per-

ormance of multi-label cross-modal retrieval and apply deep neu-

al network into multi-label cross-modal retrieval. 
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