Cross-modal Retrieval by Real Label Partial Least Squares
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ABSTRACT

This paper proposes a novel method named Real Label Par-
tial Least Squares (RL-PLS) for the task of cross-modal re-
trieval. Pervious works just take the texts and images as
two modalities in PLS. But in RL-PLS, considering that the
class label is more related to the semantics directly, we take
the class label as the assistant modality. Specially, we build
two KPLS models and project both images and texts into
the label space. Then, the similarity of images and texts
can be measured more accurately in the label space. Fur-
thermore, we do not restrict the label indicator values as the
binary values as the traditional methods. By contraries, in
RL-PLS, the label indicator values are set to the real val-
ues. Specially, the label indicator values are comprised by
two parts: positive or negative represents the sample class
while the absolute value represents the local structure in
the class. By this way, the discriminate ability of RL-PLS
is improved greatly. To show the effectiveness of RL-PLS,
the experiments are conducted on two cross-modal retrieval
tasks (Wiki and Pascal Voc2007), on which the competitive
results are obtained.
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1. INTRODUCTION

With the development of Internet technology, the quantity
of multimedia has increased dramatically. It is a great chal-
lenge to retrieve the information from the different modali-
ties. Recently, more and more people pay their attention to
the task of cross-modal retrieval [1] [9] [12] [20] [22] [24] [25].
The key problem of cross-modal retrieval is matching one
modal feature to the other modal feature in the content-
based area [13]. For example, in the image-text retrieval,
given an image query, find the texts that best describe the
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image; or given a text document, return the most related im-
ages. However, the text features and the image features are
in the different feature space so that they can’t be matched
directly with each other.

To solve the retrieval problem of the different feature spaces,
recent works are devoted to the common subspace learn-
ing [8] [9] [13] [19]. These methods try to learn a common
feature space so as to match the image and text features di-
rectly and preserve the correlations in the image-text pairs.
As one of possible solutions, Canonical Correlation Analysis
(CCA) projects two modal features to a shared latent space
which maximizes the correlations between two modal fea-
tures [7] [10] [13] [17]. Many extensions of CCA have been
used in the similar area. For example, Semantic Correlation
Match (SCM) was proposed to get the semantic subspace
by using the logistic regressor based on CCA [13]. In [20],
without no assumption on specific form of text, Correlated
Semantic Representation (CSR) obtains a joint image-text
representation and an unified formulation by learning a com-
patible function based on structural SVM.

Another classical method of subspace learning is Partial
Least Squares (PLS) [2] [6] [14] [15] [16], aiming at learning
two latent spaces by maximizing the correlations between
them. Sharma et al. [17] and Kang et al. [9] applied PLS
to build the relation between the latent variables of images
and texts. Besides cross-modal retrieval, PLS and its ex-
tensions have been applied successfully on other problems.
For an instance, in the task of cross-pose face recognition,
the relation between the coupled faces are constructed by
PLS [5] [11] [23]. In [18], bridge PLS was proposed by adding
ridge-parameter to improve the efficiency in each iteration.
Rosipal et al. [15] proposed the kernel PLS by mapping the
input variables into high dimension space so as to solve the
nonlinear problem in linear algorithm.

Moreover, most of the above algorithms don’t use the la-
bel information. Generally speaking, cross-modal retrieval
problem always exists semantic gap between the different
modalities [4] [13] [21]. But by using the label informa-
tion, the semantic gap can be decreased theoretically [4] [21].
Specially, using labels for extracting muliti-view features,
GMLDA and GMMFA, constructed by framework based on
Generalized Multiview Analysis (GMA), shown the compet-
itive performance on the cross-modal retrieval problem [17].
In [9], which gains the state-of-art performance on cross-
modal retrieval problem, the label information are used to
close different modalities within the same class and far away
between different modalities.



In this paper, we propose a supervised algorithm named
Real Label Partial Least Squares (RL-PLS), which projects
two modal feature into a common space and reserves the la-
bel information and local structure while at the same time.
Different with the above works [16] [17], we regard the label
information as the assistant modality. Thus, we achieve a
three modality shared feature space to obtain better perfor-
mance than only using two modalities. Further, considering
that the local structure of samples is ignored when all the
samples existed in the different regions have the same la-
bel [9], RL-PLS constructs the class indicator matrix using
real values to reserve the local structure. The label values in
the matrix are comprised by two parts: character and value.
Character represents the relationship between sample and
class while the absolute value represents the local structure
in the class. By using the probability belonging to the class,
the different samples are given the different weights. Finally,
the discriminative ability of RL-PLS is improved greatly.

2. KERNEL PARTIAL LEAST SQUARES

PLS can construct the relation between two different modal-

ities by maximizing the correlation between the latent vari-
ables. Recently, it has gained great success in many ar-
eas [2] [6] [16]. Kernel partial least squares(KPLS), the ex-
tension of PLS, maps original feature into a new high di-
mension feature space to solve the nonlinear problem with
linear algorithm. Because of reserving more information in
nonlinear problem, KPLS often get better performance.

For the original feature of training set, its kernel feature
as the input variables can be denoted by X € R™*", where
n is the number of training samples. The latent variables
of X are represented as V = [v1,--- ,v,]7 € R"*P, where
p is the dimension of latent variables and far smaller than
n. Similarly, Z = [z1,---,2,]7 € R™*¢ denotes the out-
put variables of training set, where d is the number of di-
mensions. It is represented by U = [u1,- -+, u,]T € R™*P,
Finally, KPLS can be built as:

X =VPT ¢,
T (1)
Z=UQ" +e,

where the matrices P and @ represent the loading matri-
ces, the matrices €, and € are the residuals matrices. And
according to [15], by means of the low dimension latent vari-
ables V, U, we can further get a regression coefficient matrix
B c R"*4 to get the relation between X and Z:

B=XxTuwv'xxTv)"'v'z @)
Z=XB" +¢p

where g is the matrix of residuals.

KPLS can be solved by Nonlinear Partial Least Squares
(NIPALS) algorithm. More details about KPLS and NI-
PALS can be found in [15]. In Fig. 1 (a), we show the
relation between different variables in KPLS model.

3. REAL LABEL PARTIAL LEAST SQUARES

In this section, we introduce the proposed method in de-
tails. In Fig. 1 (b), we show the structure diagram of the
proposed method.

3.1 Labelsin KPLS

From Eq. 2, we can know that in KPLS, the input modal-
ity X is projected into the space of the output modality Z
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(a) KPLS model

(b) RL-PLS model

Figure 1: (a) The structure diagram of PLS. (b) The
structure diagram of RL-PLS. The rectangles mean
latent space.

and the similarity of the different modalities are measured in
this space. Considering the semantic gap and the great dis-
crepancy between texts and images in cross-model retrieval,
the direct projection from the input modality to the output
modality inevitably causes the information loss of the input
modality and decreases the retrieval performance.

Compared with texts and images, label information is
more related to the semantic information. Many pairs of two
modalities share the common labels in cross-modal problem.
So, for the semantic gap between texts and images in cross-
model retrieval, we argue that label information can help to
build the relation between texts and images.

In this paper, we use L to denote the label indicator ma-
trix. We take labels as the auxiliary modality and propose
the RL-PLS method. In RL-PLS, we project images and
texts into the semantic space simultaneously. By this way,
the similarity of the different modalities can be measured
more effectively in the semantic space. Specially, taking im-
ages as the input variables and labels as the output variables,
K PLSx, constructs the relation between images and labels.
Similarly, taking texts as the input variables and labels as
the output variables, K PLSz; constructs the relation be-
tween texts and labels:

 X=V.P] +e,
KPLSxr { L=U.Q" +eL. ®)
L L=U.QF +¢;.

where V,,, U,, V, and U, are the latent variables; Py, Qz,
P, and Q. represent the loading matrices; €, €12, €, and
er. are the residuals. Eq. 3 and Eq. 4 can be solved with
NIPALS algorithm. According to Eq. 2, the regression coef-
ficient matrix B, in KPLSxr and B, in KPLSz; can be
computed as follows:

| B, =X"U,(VIXXTU,)"'V]L
KPLSxw: { L=XB! e, (5)

[ B.=Z"U.(V.'zZ"U.)"'V'L
KPLSyzy, - { I — ZBZ ten. (6)

Finally, B, and B, map the input variables which are het-
erogenous features X and Z into the target feature space
constructed by label information.



3.2 Real Labels

In KPLSx; and KPLSz;, the similarity of different
modalities are computed in the label space. In the previ-
ous works, the class indicators often are the binary matrix.
In other words, all the elements are zeros except for the cor-
responding classes [9]. Specially, if sample a is assigned to
the kth class, its indicator vector l is constructed by I = 1,
and l; = 0 for j # k. For all the samples belonging to the
same class, their class indicator vectors are the same. In
fact, different samples exist in the different regions in the
high dimensional space. The same labels mean that the lo-
cal structure of samples is ignored.

In RL-PLS, we construct the class indicator matrix using
real values to reserve the local structure. We assume that
data points in each class can be modeled by several Gaussian
distributions. The values in the class indicator matrix are
set to the probabilities that samples belong to the cluster-
ing center. So, for the samples which near the class center,
they have the bigger probability belonging to the class and
their values are close to 1. For the samples which far away
the class center, they have the bigger probability to be the
outliers and their values are close to 0. In other words, by
using the probability belonging to the class, we pay more
attentions on the samples which near the clustering center
and reduce the influence of the outliers.

Specially, there are five steps to compute class indicator
matrix L in RL-PLS. Firstly, for each class in the modality
X, we use r Gaussian distributions to model it. So, for the
total ¢ classes in the training set, we can gain s(= r X q)
Gaussian distributions {G1, G2, -+ ,Gs}. For the jth Gaus-
sian distribution Gj, the class of its corresponding samples
is c§’. The clustering center vector and covariance matrix of
Gj is p; and 3, respectively.

Secondly, we compute the Mahalanobis distance d;; be-
tween x; and p; under the covariance matrix 3;:

dij = (xi — )" =" (@5 — py) (7

Then, we compute the probability w;; that x; belongs to
the j-th Gaussian distribution:

di;
wij = exp(——3) ®)

where o is the standard deviation of D = [d1,ds, - - 7dS]T.

Fourthly, p;; is designed to show the relation between the
sample’s class and the Gaussian distribution. Suppose c; is
the class label of sample z;, the p;; is set to 1 when ¢; is
equal to ¢]. Otherwise, it is set to —1.

o+ if ¢=c]
pi = { -1, otherwise. ©)
Finally, l;; is computed as:
Lij = pij X wij (10)

Then, after the computation of the probabilistic class indi-
cator vector of all the samples in the training set, the indi-
cator matrix L can be gained by: L = [I1,12,---,1,]" and
Ui = (L, lia, - lis).

From Eq. 10, we can know that the class indicator vec-
tor can be divided into two parts: character and value. For
the samples whose class label is same to the label of the
Gaussian distribution, the real values of class indicator can
keep the local structure of the within-class. For the samples
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which has the different class label with the Gaussian dis-
tribution but it has the large probability w;;, the negative
value of the class indicator can increase the margin of the
inter-classes. So, by the combination of the character and
value, the discriminate ability of L is improved greatly.

It is must be noted that for images and texts, their class
indicator matrices are different according to the computa-
tion process of L. But considering that we try to find a
common projection subspace for texts and images while the
distributions of texts are not as complicated as images’, we
just construct L based on the texts modality.

3.3 Analysis of Computational Complexity

Lastly, we briefly analyze the computational complexity
of RL-PLS, which involves h dimensions of latent variables,
and each dimension is solved by NIPALS algorithm, in which
the max iterations is set as g. Set n as the number of sample
pairs in the training set, thus image feature and text feature
are n dimensions as a result of RBF kernel. And set ¢ as
the number of total classes. The computational complexity
of RL-PLS is O(hgn® + n?h>q).

4. EXPERIMENTS

In this section, we test RL-PLS on two popular databases
to show its performance on cross-modal retrieval.

4.1 Experimental Databases

Wiki [13] is constructed from Wikipedia including 2866
image-text pairs with 10 different classes. We randomly se-
lect 2173 image-text pairs for the training set and 693 image-
text pairs for the testing set. The texts in Wiki are rep-
resented by the 10-dimensional Latent Dirichlet Allocation
(LDA) features. For images, we use two different features to
show the effectiveness of RL-PLS. On one hand, the images
are represented by the traditional 128-dimensional vectors
based on the SIFT descriptors; on the other hand, consider-
ing the success of deep learning, we also perform experiments
using the Convolutional Neural Network (CNN). So the im-
age features are also represented by the 4096-dimensional
vectors output from the ’fc7’ layer of convolutional neural
network(CNN) based on central crop (no mirroring).

Pascal VOC2007 [3] consists of 5011/4952(training/testing)
image-tag pairs with 20 classes. Taking account that some
pairs of the database are multi-label, we choose single-label
pairs in our experiment. As a result, training set includes
2808 image-tag pairs and testing set includes 2841 image-tag
pairs. For feature representation, we use the 512-dimensional
GIST features for images, and the 399-dimensional word fre-
quency features for text.

4.2 Experimental Setting

We compare RL-PLS with PLS, KPLS, SCM, GMMFA,
GMLDA and LGCFL in two retrieval tasks. PLS and KPLS
are unsupervised learning methods while the other methods
are supervised learning methods. In PLS and KPLS, we set
the image features as input variables, and the text feature
as output variables. As for SCM, it uses CCA to learn two
maximally correlated subspaces, and then learns the logistic
regressors in each subspaces. Both GMMFA and GMLDA
use the framework of GMA[17]. LGCFL uses the valuable
class information to jointly learn the consistent features and
achieves the state-of-the-art performance.



Table 1: MAP results on the Wiki database. Images
are represented by SIFT features.

Methods Tasks im2txt txt2im Average
PLS [16] 0.207 0.192 0.199
KPLS [15] 0.260 0.201 0.231
SCM [13] 0277 0226  0.252
GMMFA [17] 0.264 0.231 0.248
GMLDA [17] 0.272 0.232 0.252
LGCFL [9] 0277 0229  0.253
RL-PLS 0.316 0.238 0.277

Table 2: M AP results on the Wiki database. Images
are represented by CNN features.

Methods Tasks im2txt txt2im Average
PLS [16] 0302 0272 0237
KPLS [15] 0374  0.322  0.348
SCM [13] 0.381 0.331 0.356
GMMFA [17] 0.373 0.340 0.357
GMLDA [17] 0.372  0.338  0.355
LGCFL [9] 0.399 0.351 0.375
RL-PLS 0.425 0.363 0.394

In our experiments, we use the Mean Average Precision
(MAP) [9] [13] metric to evaluate the performance of the
different methods. For Wiki, 5 Gaussian distributions are set
for each class. But for Pascal VOC2007, since the number of
samples are very limited for some classes, we set the number
of Gaussian distributions to 3.

4.3 Results on the Wiki database

The MAPs of the different methods on the Wiki database
where images are represented by SIFT features are shown in
Tab. 1. From the table, we can find the following scenes:

Firstly, the performance of the supervised methods (SCM,
GMMFA, GMLDA and LGCFL) outperforms those of the
unsupervised methods (PLS and KPLS) by at least 7.4%.
This indicates that the label information can provide the
available information to improve the performance.

Secondly, the average MAP of KPLS outperforms 16.1%
than PLS, which indicates that mapping original feature into
a high dimensional feature space via kernel function can get
better performance. The advantage of KPLS also motivates
us to construct RL-PLS based on KPLS rather than PLS.

Thirdly, compared with KPLS, RL-PLS obtains 20.0%
higher average MAP, which validates the effect of setting
the label information as the output variables in RL-PLS. At
the same time, the performance of RL-PLS outperforms the
state-of-art method LGCFL by 9.5% higher average MAP.
Because in RL-PLS, we break up the binary constraints in
traditional class indicator matrix used in LGCFL and re-
serve the local structure and label information in RL-PLS.
The results show the validity of RL-PLS.

Furthermore, we also repeat the experiments using CNN
image features to verify our methods’ high quality perfor-
mance. The results are shown in Tab. 2. From the table,
we can know that compared with using SIFT features, the
performance of the different methods is improved when us-
ing CNN features. The experiments show the effectiveness
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Table 3: MAP results on the PASCAL VOC2007
database.

Methods Tasks im2txt txt2im Average
PLS [16] 0.320 0.251 0.286
KPLS [15] 0.347  0.266 0.307
SCM [13] 0.392 0.280 0.336
GMMFA [17] 0.343 0.280 0.311
GMLDA [17] 0.342 0.278 0.310
LGCFL [9] 0.401 0.320 0.360
RL-PLS 0.429 0.358 0.393

of the CNN features. Besides, the results are consistent
with the conclusion obtained form Tab. 1. It is mentionable
that our methods achieve 5.1% higher average MAP than
state-of-art method LGCFL, indicating that RL-PLS is also
effective and competitive based on CNN features.

4.4 Results on the Pascal VOC2007 database

Tab. 3 shows the results on the Pascal database, from
which, we can find as follow:

Firstly, it is remarkable that the average MAP of RL-PLS
achieves 39.3%, which outperforms the state-of-art method,
the LGCFL, for more than 9.2%. This verifies the effective-
ness of RL-PLS again.

Secondly, the texts in the Pascal database have tags in-
formation, just using several words rather than paragraphs
used by Wiki database. Under the condition, RL-PLS also
gains the competitive results on the Pascal database, which
indicates that RL-PLS is also viable on the texts constructed
just by several words.

To sum up, we outperform above related methods and
achieve competitive performance on two databases. Because
of the advantages of RL-PLS, we draw the conclusion that
RL-PLS can improve the performance on cross-modal re-
trieval via reducing the diversity in common space, through
reserving the class information and local structure.

5. CONCLUSION

This paper proposes a novel method for the task of cross-
modal retrieval. In our approach, we regard the label infor-
mation as the assistant modality and construct two KPLSs.
Furthermore, we design a novel class indicator matrix with
real values which combines the class information and the lo-
cal structure. Experiments carried out on two public databases
show that our proposed method performs against the exist-
ing competitive methods.

There are several aspects to be further studied in the fu-
ture. For example, we will look for more effective class indi-
cator matrix to keep the local structure more well. We also
can extend the proposed method to handle the multi-label
and unpaired setting cross-modal retrieval task.
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